SIMON FRASER UNIVERSITY

MEMORANDUM

To:

Senate

Subject: Curriculum Revisions Faculty of Science

From: J.M. Munro, Chair
Senate Committee on
Academic Planning

Date: November 18, 1993

Action undertaken by the Senate Committee on Undergraduate Studies (SCUS Reference 93-36) and the Senate Committee on Academic Planning (SCAP Reference (SCAP 93-43) gives rise to the following motion:

Motion:

"that Senate approve and recommend to the Board of Governors the curriculum revisions for the Faculty of Science as set forth in S.93-57 as follows:
a) i) Requirements for Majors and requirements for Honors and Honors First Class
ii) Withdrawal of Program Approval
b) i) Upper Division requirements for B.Sc. Chemistry Major
ii) Change in Co-op Calendar entry for Math \& Stats
iii) Change in Co-op Calendar entry for Management and Systems Science
iv) Change in Computing Science and Statistics requirements for Mathematics Major and Honors Program
v) Program changes resulting from renumbering of STAT 102-3 to STAT 301-3
vi) Changes to Certificate Program in Actuarial Mathematics
vii) Changes to Physics Computer Skills description
viii) Changes to Chemical Physics Program
ix) Change to Geography B.Sc. Program
x) Change in Quternary Studies Minor
xi) Change in Biological Science Major
c) New courses:

MATH 171-1 Mathematics of Computer Explorations in Calculus
MATH 172-1
STAT 301-3
ACMA 315-3
ACMA 325-3
ACMA 335-3
ACMA 345-3
ACMA 355-3 Graduation of Life Tables
ACMA 365-3 Mathematics of Demography
BISC 446-0
BISC 457-3
BISC 333-3
Practicum V
Plant Molecular Biology and Biotechnology
d) Course deletions:

STAT 102-3
STAT 102-3
MACM 216-3
MACM 401-3
MACM 402-3
BISC 201-3
BISC 203-3
BISC 301-3
Marine Biology and Oceanography
Introduction to Statistics, Option B
Introduction to Computational Methods
Switching Theory and Logical Design
Automata and Formal Languages
Cell Biology

BISC 401-3
Developmental Biology
Biochemistry - Intermediary Metabolism
ACMA 330-3
Biochemistry - Regulatory Mechanisms
ACMA 340-3 Topics in Actuarial Mathematics

For Information

Acting under delegated authority of Senate, SCUS has approved revisions to the following courses as detailed in SCUS 93-36

- Prerequiste change - STAT 101-3, STAT 103-3, STAT 302-3
- Course Description and Prerequisite Change - ACMA 310-3, ACMA 320-3
- Prerequisite change - PHYS 325
- Course Description and Prerequisite Change - PHYS 100/101/102
- Course Description Change - PHYS 455
- Calendar Description Change - PHYS 324
- \quad Course Description Change - BISC 204-3
- Prerequisite Change - BISC 313-3, BISC 329-4, BISC 405-3, BISC 303-3, BISC 404-3, BISC 422-3, BISC 427-3, BISC 432-3, BISC 453-3, BISC 457-3,
- Vector Change - BISC 317-3
- Title and Description Change - BISC 406

A. 2 Requirements for Majors and requirements for Honors and Honors First Class

Rationale:

In paper S.91-2, SCAP recommended a motion on Minimum Graduation Requirements in a memorandum to Senate on 11 December 1990. The SCAP motion amended recommendations from SCUS. Senate approved the SCAP recommendation with the effect that the University "Minimum Graduation Requirements" were changed and the following was eliminated from the Faculty of Science requirement: "a grade point average of $\mathbf{2 . 0 0}$ in the upper division courses required in the program" for Majors. As the Faculty of Science has a minimum requirement of " 28 semester hours of upper division credit courses numbered 300 and 400 as specified by the major program" out of a minimum of 44 semester hours of upper division credit, it became possible for a student to graduate with a GPA less than 2.00 in the "upper division courses required in the program". Example: a Majors student with a CGPA of 2.00 (over 120 semester hours of credit) with a GPA of 1.85 in the "upper division courses required in the program) could graduate. The effect was to weaken the Faculty of Science graduation requirement.

The Faculty of Science requests that the following revisions be made to the Calendar (p. 145 of the 1993/94 Calendar):

Current text (p. 145)

Requirements for Major

- 120 semester hours of credit which include
- a minimum of 28 semester hours of upper division credit courses mumbered 300 and 400 as specified by the major program
- additional semester hours of upper division credit bringing the total to a minimum of 44 semester hours of upper division credit
- a minimum of 12 semester hours of electives in subjects taken outside the Faculty of Science (excluding EDUC 401 to 407) including a minimum of 6 semester hours taken in the Faculty of Arts

[^0]add after "..... 6 semester hours taken in the Faculty division courses required in the program
of Arts"

Change to: (revision indicated in bold)

- additional requirements as specified by the major program and in the General Information section of this Calendar (page 21)

Replace: ...as prescribed by the honors department... with: ... as prescribed by the Honors program

Requirements for Honors and Honors First Class

: -132 semester hours of credit as prescribed by the honors department which include

- a minimum of 48 semester hours of upper division credit in one subject minimum of 60 semester hours of upper division credit
- a minimum of 12 semester hours of electives in subjects taken outside the
. Faculty of Science (exciuding EDUC 401 to 407) including a minimum of 6 semester hours taken in the Faculty of Arts- 132 semester hours of credit as prescribed by the honors department whichinclude

area

- additional semester hours of upper division credit bringing the total to a
- additional requirements as specified by the honors program
and
For students enrolled at the University beginning Fall 1991 or thereafter
- upper division grade point average (GPA) and cumulative grade point average (CGPA) as specified in the General Information section of this Calendar
or
For students enrolled at the University before Fall 1991
- a graduation grade point average of 3.00 for honors or 3.50 for first class honors calculated on the required 132 semester hours or on 60 required semester hours of upper division credit
- additional requirements as specified by the honors program and in the General Information section of this Calendar (page 21)

Delete this section

A. 3 Withdrawal of Program Approval

Rationale: Departments should have the authority to remove those students from their programs who, by their performance have shown that they no longer can pursue their original goals.

Add to Faculty of Science program guidelines (p. 145 of 1993/94 Calendar) A student whose progress, in the judgment of the department, is below the standard for graduation from a progrm may be refused entry to, or required to withdraw from, that program in the department

B. Program Changes

B. 1 Upper Division Requirements for B.Sc. Chemistry Major

Rationale: The Chemistry Department wishes to restrict students from using an excessive number of directed study course credits for the Chemistry major degree. The intent of this restriction is to encourage students to take a few extra (elective) regular upper division courses (beyond the core program) in their major subject area. Similar restrictions already exist in the Biochemistry program (BICH 493-15: "Students may not receive credit for a total of more than 15 semester hours in research courses", p. 172 of 92/93 Calendar) and for Mathematics Majors (who are "required to take at least three 400 division MATH, STAT or MACM courses, none of which may be a Directed Studies, Job Practicum or Honors Essay course", p. 161 of 92/93 Calendar.

The following Calendar change is required for the 94/95 Calendar:

Page Current text (1993/94 Calendar)
154.2 Electives (40 semester hours)
to complete the B.Sc. requirement of 44 hours upper division credit (see Faculty of Science requirements)

Change to:

Add immediately after current text given at left:

Students may not include more than 15 credit hours of Individual Study/Undergraduate Research courses in the minimum of 44 hours of upper division credit required for the B.Sc. degree.

B. 2 Change in Co-op Calendar Entry for Mathematics and Statistics

Change from (pg 161-62 in 93/94 Calendar):
Co-operative Education
Co-operative Education is a program which integrates work experience with academic study. The student spends alternate semesters on campus and in paid, study-related jobs.

Arrangements for entry into the program are made through the Mathematical Sciences Co-op Co-ordinator. For further details on the co-op system students should refer to the Co-operative Education section.

Interested Mathematics and Statistics students should contact the Co-op Co-ordinator, Ms. Kerstin Baxter, TLX 10507, telephone 291-4123.
to:

Co-operative Education

Students in the Mathematics and Statistics program are invited to apply to enter Co-operative Education, a program which integrates work experience with academic study. For further details on the coop system, students should refer to the Co-operative Education section in this calendar.

Mathematical Sciences Coop students work in a variety of environments with both private and public sector employers. Past work term duties include statistical analysis, end-user support, survey design, application programming, mathematical modeling, and actuarial analysis.

Interested students should contact the Mathematical Sciences Coop Co-ordinator, Kertsin Baxter (291-4123, TLX 10507) for admission requirements and further information.

B. 3 Change in Coop Calendar Entry for Management and Systems Science Program.

Change from (pg. 159 in 93/94 Calendar):
Co-operative Education Program
Students in the Management and Systems Science program are encouraged to enter Co-operative Education, a program which integrates work experience with academic study. Interested MSSC students should contact the Management and Systems Science Coordinator, telephone 291-4123, for more information. Arrangements for entry into the program are made through the Mathematical Sciences Coop Coordinator, LB 7600, telephone 291-3239. For more detailed information see the Cooperative Education section.
to:

Co-operative Education

Students in the Management and Systems Science program are encouraged to enter Co-operative Education, a program which integrates work experience with academic study. For further details, students should refer to the Cooperative Education section of this calendar.

MSSC Coop students work in a variety of environments with both private and public sector employers. Past work term duties include modeling, application programming, marketing end-user support, MIS, and systems analysis.

Interested students should contact the Mathematical Sciences Co-op Co-ordinator, Kerstin Baxter (291-4123, TLX 10507), for admission requirements and further information.
B. 4 Computing Science and Statistics Requirements for Mathematics Major and Honors Program

Rationale: Inspired in part by the Mathematics and Statistics Departmental Review in 1987, the Department wishes to ensure that Mathematics major and honor students are exposed to courses in computing and statistics.

Change from (pg. 162, column 1):
and either 3 additional hours in lower division Mathematics or Statistics (MATH 100-2, 110-3 and 190-4 may not be included) or Computing Science (CMPT) 101-4, 102-3, 103-3 or Mathematics/Computing Science (MACM) 216-3. This requirement would normally be met by the end of the fourth level.

to:

and any one of CMPT 101-4, 102-3 or 103-3, and any course labeled STAT and 3 additional hours in lower division Mathematics or Statistics (MATH 100-3, 110-3, and 190-4 may not be included). This requirement would normally be met by the end of the fourth level.
B. 5 Program changes resulting from renumbering of STAT 102-3 to STAT 301-3.
(i) Mathematics Major and Honors Program (pg. 162, item iv in column 1)

From: STAT 302 may not be counted as part of the 30 hours
To: Neither STAT 301 nor STAT 302 may be counted as part of the $\mathbf{3 0}$ hours.
(ii) Mathematics Minor Program (pg. 162, item (ii) in column 2)

From: These courses may not include PHYS 413-3
To: These courses may not include PHYS 413-3 or STAT 301-3.
(iii) Statistics Major and Honors Program (pg. 162, item 8, in column 2)

From: (8) In addition to requirements (1) to (6) for a major...STAT, ACMA or MACM

To: (8) In addition to requirements (1) to (6) for a major...STAT, ACMA or MACM excluding STAT 301 and 302.

B. 6 Changes to Certificate Program in Actuarial Mathematics

Rationale for changes.

The present program does not fulfill this purpose as well as it could for the following reasons:

1. The course load in each of the four (4) existing ACMA courses is too heavy and it is impossible for the instructor to cover all the material. Furthermore, after taking the courses, even the very good students are not fully prepared to take the corresponding professional exams. Other universities offering Actuarial programs would offer about 8 to 12 courses in order to cover the same amount of material; and even this is seen as very demanding for the students.
2. Some of the required courses of the present program only cover parts of the syllabi of the corresponding professional exams.
3. The Society of Actuaries and the Canadian Institute of Actuaries have changed their requirements for qualification since the present program was designed.

Therefore, a new Certificate Program in Actuarial Mathematics is being proposed. What follows is a description of the proposed Certificate Program in Actuarial Mathematics, a list of changes that would have to be made to the Calendar and some additional information.

Please note that the existing four courses ACMA 310, 320, 330 and 340 will be replaced by the eight courses described in Section A. This enables all material of these four courses to be covered and also allows for further topics to be treated. All courses will not be offered each year. Two additional ACMA courses beyond the three currently offered will be offered each year, allowing some students with previous courses to complete the Certificate Program in one year, something that was not possible before.

REVISED CERTIFICATE PROGRAM IN ACTUARIAL MATHEMATICS

Course description:

ACMA 310-3 Mathematics of Compound Interest.

Abstract

Measurement of interest, present value. Equations of value. Basic annuities: immediate, due, perpetuity. General annuities. Yield rates: cash flow analysis, reinvestment rate, portfolio and investment year methods. Amortization schedules and sinking funds. Bonds and other securities. Applications: real estate mortgages, depreciation methods. Interest rate disclosure and regulation in Canada. This course covers the syllabus of Course 140 of the Society of Actuaries. (3-1-0) Prerequisite: MATH 152 must precede or be taken concurrently.

ACMA 315-3 Credibility Theory and Loss Distributions.
Statistical distributions useful in general insurance. Inferences from general insurance data. Experience rating. Credibility theory: full credibility, partial credibility, Bayesian credibility. Estimation of loss distributions. Modeling loss distributions: ungrouped data, truncated and shifted data, clustering. Applications: inflation. This course covers the syllabus of Part 4B of the Casualty Actuarial Society. (3-0-0) Prerequisite: STAT 280 must precede or be taken concurrently.

ACMA 320-3 Actuarial Mathematics I.
Survival distributions: age at death, life tables, fractional ages, mortality laws, select and ultimate life tables. Life insurance: actuarial present value function (apv), moments of apv, basic life insurance contracts, portfolio. Life annuities: actuarial accumulation function, moments of apv, basic life annuities. Net annual premiums: actuarial equivalence principle, loss function, accumulation type benefits. Actuarial reserves: prospective loss function, basic contracts, recursive equations, fractional durations. This course covers part of the syllabus of Course 150 of the Society of Actuaries. (3-1-0) Prerequisites: ACMA 310. MATH 232 and STAT 280 must precede or be taken concurrently.

ACMA 325-3 Actuarial Mathematics II.
Actuarial reserves: allocation of the loss to the policy years. Multiple life functions: joint-life, last-survivor. Multiple decrement models: stochastic and deterministic approaches, associated single decrement, fractional durations. Valuation theory for pension plans. Insurance models including expenses: gross premiums and reserves, type of expenses, modified reserves. Nonforfeiture benefits and dividends: equity concept, cash values insurance options, asset shares, dividends. This course covers part of the syllabus of Course 150 of the Society of Actuaries. (3-1-0) Prerequisite: ACMA 320.

ACMA 335-3 Risk Theory.

The economics of insurance: utility theory, optimal insurance. Individual risk models for a short term: individual claim, sums of independent claims, approximations for the distribution, applications. Collective risk models for a single period: aggregate claims, compound poisson distribution, approximations. Collective risk models over an extended period: claims processes, adjustment coefficient, discrete time model, surplus below the initial level, maximal aggregate loss. Applications: claim amount distribution, stop-loss reinsurance. This course covers the syllabus of Course 151 of the Society of Actuaries. (3-1-0) Prerequisite: ACMA 320.

ACMA 345-3 Survival Models.
Actuarial survival models: select, aggregate, study design. Mathematics of survival models: distribution of T, parametric survival models, conditional and truncated distributions, transformed random variables. Life table: traditional form, fractional ages, select and ultimate tables. Estimating survival models from complete data samples: study design, exact time of death, grouped times of death. Estimating survival models from incomplete data samples: study design, moments procedures, maximum likelihood procedures. Estimation of parametric survival models. General population data. This course covers the syllabus of Course 160 of the Society of Actuaries. (3-0-0) Prerequisite: ACMA 320.

ACMA 355-3 Graduation of Life Tables.
Definition of graduation. Smoothness. Fit-testing. Graduation methods: moving-weighted-average, Whitaker, Bayesian, parametric. Smooth-junction interpolation. Two-dimensional graduation. This course covers the syllabus of Course 165 of the Society of Actuaries. (3-0-0) Prerequisites: ACMA 320 and MAC 316.

ACMA 365-3 Mathematics of Demography.
Data: collection, errors. Measures of mortality and fertility: crude rates, agespecific rates, adjusted measures. Construction of life tables from census data: US 1979-81, Canada 1985-87. Stationary population: survivorship group, lexis diagram, applications. Stable population: foundations, growth rate, applications, quasi-stable populations. Population projections: inter-censal, post-censal, logistic curve, component method. Uses of census data. This course covers the syllabus of Course 161 of the Society of Actuaries. ($3-0-0$) Prerequisite: ACMA 320.

Curriculum:
Required courses:
MATH 151
MATH 152
MATH 232

STAT 270 STAT 280
ACMA 310
ACMA 320
Four of the following six courses:
ACMA 315 ACMA 325 ACMA 335 ACMA 345 ACMA 355 ACMA 365
One of the following two courses: MACM 316 STAT 330
Correspondence between SOA exams and SFU courses:

SOA exams	SFU courses	SOA exams	SFU courses
100	MATH 151, 152, 232	150	ACMA 320, 325
110	STAT 270, 280	151	ACMA 335
120	STAT 330 (partly)	-160	ACMA 345
130	MATH 308 (partly)	161	ACMA 365
135	MACM 316	165	ACMA 355
140	ACMA 310	CAS 4B	ACMA 315

Calendar changes to Calendar Description of Mathematics and Actuarial Mathematics Program
(i) Changes to Statistics Minor Option (pg. 162, column 2, item ii)

From:
(ii) obtain credit for at least 5 of the following courses STAT 330, $350,380,402,410,420,430,440,480,460$ and ACMA 330. (This will normally include STAT 330, 350 and 450.)

To:
(ii) obtain credit for at least 5 of the following courses STAT 330, 350, 380, 402, 410, 420 430, 440, 450, 460, ACMA 315, ACMA 320, ACMA 335 and ACMA 345. (This will normally include STAT 330, 350 and 450.)
(ii) Certificate in Actuarial Mathematics (pg. 162, column 2 to pg. 163, column 1)

Replace the entire section with:
Certificate in Actuarial Mathematics
This certificate program is designed to prepare the student for taking most of the Society of Actuaries Associateship examinations (SOA courses 100 through 165) or the Casualty Actuarial Society Associateship examinations (Parts 1 through 4). To obtain the Certificate, the following courses must be completed:

Required courses:
MATH 151
STAT 270
ACMA 310
MATH 152
MATH 232
STAT 280
ACMA 320

Four of the following six courses:
ACMA 315 ACMA 325 ACMA 335 ACMA 345 ACMA 355 ACMA 365
One of the following two courses: MACM 316 STAT 330
Note: Students completing the above courses who are also enrolled in either a major or minor program in Mathematics may count these MATH, MACM, or STAT courses both toward the certificate in actuarial mathematics and for their major or minor program in Mathematics. The ACMA courses may be used to satisfy upper division requirements for a minor in Mathematics, minor in Statistics or major in Statistics.
B. 7 Changes to Physics Computer Skills description

Rationale:
The Co-op program has requested that a statement be inserted in the section on "Computer skills" in the Physics section of the Calendar.

Change from (pg 163, column 2):
Computing skills such as those obtained in CMPT 102 will be expected of students entering the second year Physics courses.
to:
Computing skills such as those obtained in CMPT 102 will be expected of students entering the second year Physics courses. The Co-op program highly recommends that Co-op students complete one of CMPT 101, CMPT 102 or CMPT 103, plus CMPT 112 prior to placement in the first work term.
B. 8 Changes to Chemical Physics program

Rationale:
Both the major and honors programs in Chemical Physics in the current calendar (1993-1994) list CHEM 332-3 and CHEM 336-2 as required courses. However the Chemistry Department has introduced a new course CHEM 331-3 "Practical Aspects of Inorganic Chemistry" which combines aspects of CHEM 332-3 and CHEM 336-2.

It is the opinion of the Chemical Physics Committee that the single course CHEM 331-2 is a suitable replacement for the previous two courses.
(i) Change Upper Division major program requirements for Chemistry, plus total number of hours (pg 153, column 2)

From:

Upper Division Requirements

(total 43-44 semester hours)
CHEM 316-3 Introductory Instrumental Analysis
332-3 . The Chemistry of Transition Elements
336-2 Inorganic Chemistry Laboratory I
361-3 Physical Chemistry II (or PHYS 385-3
Quantum Physics)
367-2 Physical Chemistry Lāboratory II(a)
462-3 Molecular Spectroscopy
To:
Upper Division Requirements
(total 38-39 semester hours)
CHEM 316-3 Introductory Instrumental Analysis
331-3 Practical Aspects of Inorganic Chemistry ${ }^{(f)}$
361-3 Physical Chemistry II (or PHYS 385-3 Quantum Physics)
367-2 Physical Chemistry Laboratory II(a) 462-3 Molecular Spectroscopy
(ii) Change Upper Division Honors program requirements for Chemistry, plus total number of hours (pg. 153, column 2)

From:

Upper Division Requirements

(total 51-53 semester hours)
CHEM 332-3 The Chemistry of Transition Elements

336-2 Inorganic Chemistry Laboratory I (or NUSC 341-3 Introduction to Radiochemistry)
361-3 Physical Chemistry II (or PHYS 385-3 Quantum Physics)
367-2 Physical Chemistry Laboratory II(a)
462-3 Molecular Spectroscopy
plus 5 semester hours of electives from upper division Chemistry or Nuclear Science courses.

To:

Upper Division Requirements

(total 46-47 semester hours)
CHEM 331-3 Practical Aspects of Inorganic Chemistry
361-3 Physical Chemistry II (or PHYS 385-3
Quantum Physics)
367-2 Physical Chemistry Laboratory II (a)
462-3 Molecular Spectroscopy
plus 5 semester hours of electives from upper division Chemistry or Nuclear Science courses.
(iii) Footnotes to Chemical Physics Program (pg. 154, column 1)

Under "Notes for Major and Honors Programs add:
(f) CHEM 331-3. The prerequisite CHEM 118-2 may be waived. CHEM 218-3 is required and may be taken concurrently.
B. 9 Change to Geography B.Sc. program
(i) Change upper division requirements of Geography Major (page 157, column 1)

From:
Required Geography Courses - 400 level
Two of
GEOG 412-4 Quaternary Geology and Geomorphology
413-4 Geomorphology III
414-4 Climatology III
415-4 Advanced Biogeography
416-4 Pleistocene Geography
418-4 Terrain Evaluation
419-4 Mass Transfer in the Biosphere (8 hours)
To:

Required Geography Courses - 400 Level

Two of

GEOG	$412-4$	\quad Quaternary Geology and Geomorphology
$41-4$	Geomorphology III	
$414-4$	Climatology III	
$415-4$	Advanced Biogeography	
4164	Pleistocene Geography	
$417-4$	Soil Science II	
$418-4$	Land Evaluation	
	$419-4$	Mass Transfer in the Biosphere \quad (8 hours)

(ii) Change upper division requirements of Physical Geography minor program (pg. 158, column 1)

From:

Upper Division Requirements

A minimum of 16 hours selected from: GEOG 311-4 Hydrology 313-4 Geomorphology II 314-4 Climatology II 315-4 Regional Ecosystems 316-4 Ecosystem Biogeochemistry 317-4 Soil Geography 412-4 Quaternary Geology and Geomorphology 413-4 Geomorphology III 414-4 Climatology III 415-4 Advanced Biogeography 416-4 Pleistocene Geography 418-4 Terrain Evaluation 419-4 Mass Transfer in the Biosphere
To:

Upper Division Requirements

A minimum of 16 hours selected from:
GEOG 311-4 Hydrology
313-4 Geomorphology II
314-4 Climatology II
315-4 Regional Ecosystems
316-4 Ecosystem Biogeochemistry
317-4 Soil Science I
412-4 Quaternary Geology and Geomorphology
413-4 Geomorphology III
414-4 Climatology III
415-4 Advanced Biogeography
416-4 Pleistocene Geography
417-4 Soil Science II
418-4 Land Evaluation
419-4 Mass Transfer in the Biosphere
(iii) Change upper division requirement of Geography major (page 157, column 1)

From:
Three of GEOG

Hydrology
313-4 Geomorphology II
314-4 Climatology II
315-4 Regional Ecosystems
316-4 Ecosystem Biogeochemistry 317-4 Soil Geography (12 hours)
To:
Three of:
311-4 Hydrology
313-4 Geomorphology II314-4 Climatology II
315-4 Regional Ecosystems
316-4 Ecosystem Biogeochemistry317-4 Soil Science I(12 hours)
B. 10 Change in Quaternary Studies Minor
Change the Calendar description of the Quaternary Studies Minor (pg.165, column 2)
From:
Upper Division Requirements(14-16 semester hours)
All students must take the following:
One of
ARCH 410-5 Advanced Archeometry
ARCH 411-5 Archaeological Dating
One of
BISC 434-5 Paleoecology and PalynologyARCH 340-5Introductory Zooarchaeology
One of
GEOG 412-4 Quaternary Geology and Geomorphology
GEOG 416-4 Pleistocene Geography
Both of
QUAT 400-1 Seminar in Quaternary StudiesQUAT 401-1 Field School
To:
Upper Division Requirements
(14-16 semester hours)
All students must take the following:
One of
ARCH 410-5 Advanced ArchaeometryOne of
ARCH 340-5 Introductory Zooarchaeology
ARCH 365-3 Ecological Archaeology
BISC 434-5 Paleoecology and Palynology

One of
ARCH 438-5 Geoarchaeology
GEOG 412-4 Quaternary Geology and Geomorphology
GEOG 416-4 Pleistocene Geography
Both of
QUAT 400-1 Seminar in Quaternary Studies
QUAT 401-1 Field School

B. 11 Change in Biological Science Major

(i) Change (pg. 151 column 1) the lower division core

From:
Courses in Biological Sciences

50 lower division total
To:
Courses in the Faculty of Science
BISC 101-4 Introduction to Biology
BISC 102-4 Introduction to Biology
BISC 202-3 Genetics
BISC 204-3 Introduction to Ecology
BICH 221-3 Cell Biology and Biochemistry (or BISC 201)
BICH 222-3 Molecular Biology and Biochemistry
CHEM 102-3 General Chemistry I
CHEM 115-2 General Chemistry Laboratory I
plus
a minimum of 10 semester hours selected from:
CHEM 103-3 General Chemistry II
CHEM 118-2 General Chemistry Laboratory II
CHEM 150-3 Organic Chemistry 1
CHEM 155-2 Organic Chemistry Laboratory I
CHEM 250-3 Organic Chemistry II
CHEM 255-2 Organic Chemistry Laboratory II
plus
MATH 154-3 Calculus I for the Biological Sciences (or MATH 151-3)
MATH 155-3 Calculus II for the Biological Sciences (or MATH 152-3)
STAT 301-3 Statistics for the Life Sciences
(or STAT 102-3 Introduction to Statistics, Option B)
PHYS 101-3 General Physics I (or Phys 120)
PHYS 102-3 General Physics II (or Phys 121)
(ii) Change (pg. 151, column 2) the upper division requirements and electives

From:
BISC 301-3
-
\cdot
BISC 400-3 Evolution
The remaining seven...
To:
One of
BICH 322-3 Molecular Physiology
BICH 321-3 Intermediary Metabolism
One of
BISC 305-3 Animal Physiology
BISC 366-3 Plant Ecophysiology
One of
BISC 306-3 Invertebrate Biology
BISC 316-3 Vertebrate Biology
One of
BISC 326-3
BISC 337-3
Biology of Non-vascular Plants
Comparative Morphology, Distribution and Evolution of Vascular Plants
All of

BISC	$333-3$	Developmental Biology
BISC	$329-4$	Introduction to Experimental Techniques
BISC	$400-3$	Evolution

The remaining six....
(iii) Change (pg. 151, column 2) the upper division requirements and electives
From:
*Students may substitute...this requirement."
To:
*Students may substitute a maximum of two courses from among BICH 321, 322, 421, 422 and 423, GEOG 315, 415 and 419, KIN 305, 306, 326, 336 and 431 to satisfy this requirement.
(iv) Change (pg 151, column 2) typical lower division core program From:

STAT 102-3 Introduction to Statistics, Option B
Electives
To:
Level 2
BISC 101-4 Introduction to Biology
CHEM 150-3 Organic Chemistry I (or CHEM 103-3 General Chemistry II)
CHEM 155-2 Organic Chemistry Laboratory I (or CHEM 1182 General Chemistry Laboratory II)
MATH 155-3 Calculus II for the Biological Sciences
PHYS 101-3 General Physics I
Level 3
CHEM 250-3-- Organic Chemistry-II-(orCHEM-150-3-Organic Chemistry I)
CHEM 255-2 Organic Chemistry Laboratory II (or CHEM 155-2 Organic Chemistry Laboratory I)
PHYS 102-3 General Physics II
BICH 221-3 Cell biology and Biochemistry (or BISC 201-3 Cell Biology)
and one of
BISC 202-3 Genetics
BISC 204-3 Introduction to Ecology
Level 4

STAT 301-3
BICH 222-3
and one of
BISC 202-3 Genetics
BISC 204-3 Introduction to Ecology
(v) Change (pg. 152, column 1) Minor program

From:
At least two of
BISC 201-3
202-3
203-3
204-3
To:
At least two of:

BISC 202-3
BISC 204-3
BICH 221-3
BICH 222-3

Genetics
Introduction to Ecology
Cell Biology and Biochemistry
Molecular Biology and Biochemistry
(vi) Change (pg 152, column 1) Environmental Toxicology Minor Program lower division requirements
From:

RISC $101-4$	Introduction to Biology
$102-4$	Introduction to Biology
$201-3$	Cell Biology
CHEM 102-3	General Chemistry I
$103-3$	General Chemistry II
$115-2$	General Chemistry Laboratory I
$118-2$	General Chemistry Laboratory II
$150-3$	Organic Chemistry I
$155-2$	Organic Chemistry Laboratory I
$250-2$	Organic Chemistry II
MATH 154-2	Calculus I for the Biological Sciences (or
	MATH 151-3)

155-3 Calculus II for the Biological Sciences (or MATH 152-3)
PHYS 101-3 General Physics I (or PHYS 120-3)
102-3 General Physics II (or PHYS 121-3)
STAT 102-3 Introduction to Statistics, Option B
To:
BISC 101-4 Introduction to Biology
102-4 Introduction to Biology
BICH 221-3 Cellular Biology and Biochemistry (or BISC 201-3)
CHEM 102-3 General Chemistry I
103-3 General Chemistry II
115-2 General Chemistry Laboratory I
118-2 General Chemistry Laboratory II
150-3 Organic Chemistry
155-2 Organic Chemistry Laboratory I
250-2 Organic Chemistry II
255-2 Organic Chemistry Laboratory II
MATH 154-3 Calculus I for the Biological Sciences (or MATH 151-3)
155-3 Calculus II for the Biological Sciences (or MATH 152-3)
PHYS 101-3 General Physics I (or PHYS 120-3)
102-3 General Physics II (or PHYS 121-3)
(vii) Change (pg 152, column 1) Environmental Toxicology Minor Program upper division requirements From:

BISC 312-3 Environmental Toxicology I
313-3 Environmental Toxicology II
432-3 Chemical Pesticides and the Environment

To: BISC 312-3 313-3 432-3 STAT 301-3

Environmental Toxicology I
Environmental Toxicology II
Chemical Pesticides and the Environment
Statistics for the Life Sciences

D. Summary of New Course Proposals

D. 1 MATH 171-1 and MATH 172-1

New Courses in Computing Applications to Calculus
Rationale: The Mathematics and Statistics Department wishes to offer supplementary courses in computer applications to calculus. The courses are one credit each and accompany the standard calculus sequences. The courses may not be taken without the analytical calculus courses (MATH 151/154/157 for the new course MATH 171, and MATH 152/155/158 for the new course MATH 172).

MATH 171-1 (1-0-2) Mathematics of Computer Explorations in Calculus I This supplement to MATH 151/154/157 gives students the opportunity to explore and investigate the underlying principles of differential calculus using leading edge computer software currently used in mathematical and
scientific research and industry. Previous experience with computers would be beneficial, but it is not required.

Prerequisite: B.C. Math 12 (or equivalent) with a grade of at least B or Math 100 with a grade of at least C.
Corequisite: Math 151/154/157. Other students may register with special permission.
Textbooks: "Calculus with Computers" by Tasoula Berggren, Simon Fraser University. This manual is a is a collection of selected activities for computer based projects in differential calculus.
"First Leaves: A Tutorial Introduction to Maple V" by B. Char, K. Geddes et al. Springer-Verlag, New York, 1992.

UNIT 1 Learning to use the software
UNIT 2 Functions and tangent line approximations
UNIT 3 Continuity of functions and limits
UNIT 4 Proofs about derivatives using the definition
UNIT 5 Roots of polynomials and of derivatives
UNIT 6 Maxima, minima and points of inflection
UNIT 7 Investigating special functions using limits and derivatives
UNIT 8 Investigating more graphs of functions
UNIT 9 Implicit differentiation
UNIT 10 Newton's method
UNIT 11 The problem on shortest lines by Apolionius
UNIT 12 Proofs by induction
MATH 172-1 (1-0-2) Mathematics of Computer Explorations in Calculus II This is a supplement to MATH 152/155/158

Prerequisites: Math 151/154/157
Corequisites: Math 152/155/158. Other students may register by special permission.
Textbook: "Calculus with Computers" by Tasoula Berggren, Simon Fraser University. This manual is a collection of selected activities for computer based projects in integral calculus.
"First Leaves: A Tutorial Introduction to Maple V" B.Char, K. Geddes et al. Springer-Verlag, New York, 1992.

Unit 1 Learning to use the software
Unit 2 Investigating the integrability of functions
Unit 3 Approximate Integration - Simpson's Rule
Unit 4 Finding Integrals using Mathematics software
Unit 5 A problem in finding Area A/ Area B for cubic functions
Unit 6 Improper Integrals
Unit 7 The volume remains finite while the area becomes infinite
Unit 8 Arc Length
Unit 9 Centroids
Unit 10 Harmonic Series
Unit 11 McLaurin Series

Unit 12 Taylor Series
Unit 13 Generating a Taylor Series

D. 2 New Course Proposal for STAT 301-3 (3-0-1) Statistics for the Life Sciences

Rationale:

This service course for students in Biochemistry, Biological Sciences, and Kinesiology is being developed at the request of representatives from these programmes and in consultation with them. It will replace STAT 102. The primary goal of the revisions is to develop a course with the more experienced student in mind. The course will be taken by students who typically will have had some exposure to experimentation. After the students have come to understand the basic concepts and analysis techniques in STAT 301, they will then typically have an opportunity to reinforce them in subsequent courses in their own discipline. Integration of this course into the Life Sciences programs will be handled by a steering committee with representatives from the Biochemistry program, Biological Sciences Department, School of Kinesiology and Department of Mathematics and Statistics. The course will first be offered in 94-3, at which time STAT 102 will be dropped.

Evaluation:

The attached schedule allows for a single mid-semester test. Normally, there would be a three-hour final examination. In addition, exercises would usually be assigned once a week, and short tests might be given to test the students' understanding of key concepts.

Calendar Description:
*STAT 301-3 Statistics for the Life Sciences. An introductory course in research methodology and associated statistical analysis techniques for students with training in the life sciences. (3-0-1 \dagger) Prerequisite: Either the student must have 45 semester hours of credit or MATH 152 or 155 must precede or be taken concurrently. Students with credit for STAT 101, 102, 103 or 270 (formerly MATH 272) may not take STAT 301 for further credit. [Mathematics minor, major, and honours students may not use this course to satisfy the required number of semester hours of upper division Mathematics credit. However, they may include the course to satisfy the total number of required hours of upper division credit.]

Course Content:

1. Data Summaries and Displays
2. Summarizing the Relationship between Variables
3. The Research Process
4. Case Studies
5. Basic Probability Calculations
6. Distributions for Count Data
7. Hypothesis Tests and Confidence Intervals
8. Comparing Two Treatments
9. Inference on the Relationship between Two Variables
10. Comparing Several Treatments
11. Analyzing Frequency Counts

D. 3 New Course Proposals for Actuarial Mathematics

Rationale:
The changes in the program and course content are listed in B.6. The new courses are ACMA 315-3, ACMA 325-3, ACMA 335-3, ACMA 345-3, ACMA 355-3 and ACMA 365-3.
D. 4 New Course Proposals for Biosciences
(i) BISC 446-0 Practicum V

Rationale:

The Co-op program has requested that a fifth work term course BISC 446-0 be made available to Co-op students. The Calendar description is in Appendix B.
(ii) BISC 457 Plant Molecular Biology and Biotechnology

Rationale:
Although this course is currently in the Calendar, it has never been offered. The proposed changes (which are on a new course proposal form) are to the vector, title and course content. The course outline is given on the following page.

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: MATH

Course Number: 171

Department: Mathematics \& Statistics

Title of Course: Mathematics of Computer Explorations in Calculus I
Calendar Description of Course: This supplement to MATH $151 / 154 / 157$ gives students the opportunity to explore and investigate the underlying principles of differential calculus using leading edge computer software currently used in mathematical and scientific research and industry. Previous experience with computers would be beneficial, but it is not required.

Nature of Course: one lecture per week with open lab.
Prerequisite (or special instructions): B.C. math 12 (or equivalent) with a grade of at least B or MATH 100 with a grade of at least C. Corequisite: MATH 151, MATH 154 or MATH 157. Other students may register with special permission.

What course (courses), if any, is being dropped from the calendar if this course is approved: none.
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? fall
Which of your present faculty would be available to make the proposed offering possible: L. Berggren, T. Berggren, P. Borwein, A. Freedman, J. Hebron, S. Thomason.
3. Objectives of the Course: To explore the concepts of differential calculus by using cutting-edge technology which students may use in their future careers.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:
Faculty none
Staff none
Library Two sets of Maple manuals (three volumes) on reserve.
Audio Visual use of computer projection system.
Space none
Equipment none
5. Approval
 Chair, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: MATH

Department: Mathematics \& Statistics

Credit Hours: one Vector: 1-0-2

Title of Course: Mathematics of Computer Explorations in Calculus II
Calendar Description of Course: This supplement to MATH 152/155/158 gives students the opportunity to explore and investigate the underlying principles of integral calculus using leading edge computer software currently used in mathematical and scientific research and industry. Previous experience with computers would be beneficial, but it is not required.

Nature of Course: one lecture per week with open lab.
Prerequisite (or special instructions): MATH 151, MATH 154 or MATH 157. Corequisite: MATH 152, MATH 155 or MATH 158. Other students may register with special permission.

What course (courses), if any, is being dropped from the calendar if this course is approved: none.
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? spring
Which of your present faculty would be available to make the proposed offering possible: L. Berggren, T. Berggren, P. Borwein, A. Freedman, J. Hebron, S. Thomason.

Objectives of the Course: To explore the concepts of integral calculus by using cutting-edge technology which students may use in their future careers.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:
Faculty none
Staff none
Library Two sets of Maple manuals (three volumes) on reserve.
Audio Visual use of computer projection system.
Space none
Equipment none
5. Approval

Chair, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Department: Mathematics and Statistics
Abbreviation Code: STAT Course Number: 301 Credit Hours: 3 Vector: 3-0-1†
Title of Course: Statistics for the Life Sciences
Calendar Description of Course: An introductory course in research methodology and associated statistical analysis techniques for students with training in the life sciences.

Nature of Course: Three hours of lectures supported through the Statistics Workshop.
Prerequisites (or special instructions): Either the student must have 45 semester hours of credit or a minimum of 30 semester hours including MATH 152 or MATH 155. Students with credit for STAT 101, 102, 103, or 270 (formerly MATH 272) may not take STAT 301 for further credit. [Mathematics minor, major, and honors students may not use this course to satisfy the required number of semester hours of upper division mathematics. However, they may include the course to satisfy the total number of required hours of upper division credit.]

What course (courses), if any, is being dropped from the calendar if this course is approved: STAT 102
2. Scheduling

How frequently will the course be offered? Twice a year (fall and spring semesters).
Semester in which the course will first be offered? 94-3
Which of your present faculty would be available to make the proposed offering possible:
Drs. Dean, Eaves, Lockhart, Routledge, Swartz, and Weldon.
3. Objectives of the Course: To introduce students in biochemistry, biological sciences, and kinesiology to the fundamentals of experimental design and associated statistical analysis.
4. Budgeary and Space requirements (for information only)

What additional resources will be required in the following areas:

Faculty)
Staff)
Library)
Audio Visual)
Space)
Equipment)

None. This is a replacement of the existing course STAT 102.

Chair, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA

Department: Mathematics \& Statistics
Credit Hours: three Vector: 3-0-0

Title of Course: Credibility Theory and Loss Distributions.
Calendar Description of Course: Statistical distributions useful in general insurance. Inferences from general insurance data. Experience rating. Credibility theory: full credibility, partial credibility, Bayesian credibility. Estimation of loss distributions. Modeling loss distributions: ungrouped data, truncated and shifted data, clustering. Applications:
inflation. This course covers the syllabus of Part 4B of the Casualty Actuarial Society.
Nature of Course: Lecture.
Prerequisites (or special instructions):_STAT_280_must_precede_or_be_taken_concurrently.
What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Spring 1994.
Which of your present faculty would be available to make the proposed offering possible:
Dean, Lockhart, Parker, Reilly, Routledge, Swartz, Weldon.
Objectives of the Course: To introduce the subject of credibility theory and to study some basic distributions useful for general insurance companies
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:

Faculty)	
Staff)	
Library	,	
Audio Visual	,	
Space	,	
Equipment	I	

5. Approval

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA Course Number: 325-3

Title of Course: Actuarial Mathematics II.

Calendar Description of Course: Actuarial reserves: allocation of the loss to the policy years. Multiple life functions: joint-life, last-survivor. Multiple decrement models: stochastic and deterministic approaches, associated single decrement, fractional durations. Valuation theory for pension plans. Insurance models including expenses: gross premiums and reserves, type of expenses, modified reserves. Nonforfeiture benefits and dividends: equity concept, cash values insurance options, asset shares, dividends. This course covers part of the syllabus of Course 150 of the Society of Actuaries.

Nature of Course: Lecture.
Prerequisites (or special instructions): ACMA 320.
What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Fall 1994.
Which of your present faculty would be available to make the proposed offering possible: Lockhart, Parker, Reilly, Weldon.
3. Objectives of the Course: To generalize the actuarial functions studied in ACMA 320.
4. Budgetary and Space requirements. (for information only)

What additional resources will be required in the following areas:

5. Approval

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA
Title of Course: Risk Theory.

Department: Mathematics \& Statistics
Credit Hours: three

Vector: 3-1-0

Calendar Description of Course: The economics of insurance: utility theory, optimal insurance. Individual risk models for a short term: individual claim, sums of independent claims, approximations for the distribution, applications. Collective risk models for a single period: aggregate claims, compound Poisson distribution, approximations. Collective risk models over an extended period: claims processes, adjustment coefficient, discrete time model, surplus below the initial level, maximal aggregate loss. Applications: claim amount distribution, stop-loss reinsurance. This course covers the syllabus of Course 151 of the Society of Actuaries.

Nature of Course: Lecture.
Prerequisite (or special instructions): ACMA 320.
What course (courses), if any, is being dropped from the calendar if this course is approved: ACMA 330.
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Summer 1995.
Which of your present faculty would be available to make the proposed offering possible:
Dean, Lockhart, Parker, Reilly, Routledge, Swartz, Weldon.
3. Objectives of the Course: To introduce the individual and collective risk models used to estimate the probability of ruin of an insurance company.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:

Faculty)	
Staff	,	
Library	,	
Audio Visual	,	
Space	,	
Equipment		

5. Approval

Chair, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA

Course Number: 345-3

Department: Mathematics \& Statistics
Credit Hours: three
Vector: 3-0-0

Title of Course: Survival Models.
Calendar Description of Course: Actuarial survival models: select, aggregate, study design. Mathematics of survival models: distribution of T, parametric survival models, conditional and truncated distributions, transformed random variables. Life table: traditional form, fractional ages, select and ultimate tables. Estimating survival models from complete data samples: study design, exact time of death, grouped times of death. Estimating survival models from incomplete data samples: study design, moments procedures, maximum likelihood procedures. Estimation of parametric survival models. General population data. This course covers the syllabus of Course 160 of the Society of Actuaries.

Nature of Course: Lecture.
Prerequisite (or special instructions): ACMA 320.
What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Summer 1994.
Which of your present faculty would be available to make the proposed offering possible:
Dean, Lockhart, Parker, Reilly, Routledge, Swart, Weldon.
3. Objectives of the Course: To study different methods of estimating survival models.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:

Faculty)	
Staff		
Library		
Audio Visual,		
Space		
Equipment		
	,	

5. Approval

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA Course Number: 355-3

Department: Mathematics \& Statistics

Credit Hours: three
Vector: 3-0-0

Title of Course: Graduation of Life Tables.
Calendar Description of Course: Definition of graduation. Smoothness. Fit-testing. Graduation methods: moving-weighted-average, Whitaker, Bayesian, parametric. Smooth-junction interpolation. Two-dimensional graduation. This course covers the syllabus of Course 165 of the Society of Actuaries.

Nature of Course: Lecture.
Prerequisites (or special instructions): ACMA 320 and MACM 316.
What course (courses), if any, is being dropped from the calendar if this course is approved: ACMA 340.
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Fall 1995.
Which of your present faculty would be available to make the proposed offering possible:
Lockhart, Parker, Reilly, Russell, Trummer, Weldon.
Objectives of the Course: To familiarize students with some methods of graduation used by actuaries.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:

Faculty)	
Staff)	
Library	,	
Audio Visual	,	
Space	,	
Equipment		

5. Approval

SENATE COMMITTEE ON UNDERGRADUATE STUDIES COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: ACMA

Department: Mathematics \& Statistics
Credit Hours: three Vector: 3-0-0

Title of Course: Mathematics of Demography.
Calendar Description of Course: Data: collection, errors. Measures of mortality and fertility: crude rates, age-specific rates, adjusted measures. Construction of life tables from census data: US 1979-81, Canada 1985-87. Stationary population: survivorship group, lexis diagram, applications. Stable population: foundations, growth rate, applications, quasi-stable populations. Population projections: inter-censal, post-censal, logistic curve, component method. uses of census data. This course covers the syllabus of Course 161 of the Society of Actuaries.

Nature of Course: Lecture.
Prerequisite (or special instructions): ACMA 320.
What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? once per year
Semester in which the course will first be offered? Spring 1995.
Which of your present faculty would be available to make the proposed offering possible: Lockhart, Parker, Reilly, Weldon.
3. Objectives of the Course: To study the mathematics of demography for stationary and stable populations.
4. Budgetary and Space requirements (for information only)

What additional resources will be required in the following areas:
Faculty ,
Staff)
Library ,
Audio Visual
Space

None
Equipment ,
5. Approval

Chair, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline.)

SENATE COMMITTEE ON UNDERGRADUATE STUDIES

NEW COURSE PROPOSAL FORM

1. Calendar Information

Abbreviation Code: BISC \qquad Course Number: \qquad 333

Department:
Biosciences

Title of Course: Developmental Biology
Calendar Description of Course:
Classical and modern experimental approaches will be described for understanding the development of the embryos of several species having common and distinctive features. These approaches are at the organismal, cellular, molecular, and genetic levels.

Nature of Course
Lecture

Prerequisites (or special instructions):

BISC 202, BICH 221, BICH 222

What course (courses), if any, is being dropped from the calendar if this course is approved: BISC 203
2. Scheduling

How frequently will the course be offered? Twice per year
Semester in which the course will first be offered? 95-1
Which of your present faculty would be available to make the proposed offering possible? B. Brandhorst, M.J. Smith
3. Objectives of the Course

Modern developmental biology depends on concepts and methods introduced in the prerequisite course on cellular and molecular biology, and genetics. Students entering the current course, BISC 203, which lacks these prerequisites, have variable course-work backgrounds and considerable remedial teaching is required. The new prerequisites will allow a broader, more contemporary course to be offered.
4. Budgetary and Space Requirements (for information only)

What additional resources will be required in the following areas:
Faculty
Staff
Library Resourses adequate since this course is a modification of an existing Audio Visual ${ }^{\text {Purse. }}$

Space
Equipment
5. Approval

SENATE COMMITTEE ON UNDERGRADUATE STUDIES

NEW COURSE PROPOSAL FORM

1. Calendar Information

Department: Biological Sciences
Abbreviation Code: BISC Course Number: 446 Title of Course: PRACTICUM V

Calendar Description of Course:
Fifth semester of work experience in the Biological Sciences Cooperative Education Program.

Nature of Course

Prerequisites (or special instructions):
BISC 444-0

What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? Each Semester
Semester in which the course will first be offered? 93-3
Which of your present faculty would be available to make the proposed offering possible?
3. Objectives of the Course

To provide the option of a fifth Coop work term in those circumstances where considered appropriate by the coop coordinators for Biological Sciences.
4. Budgetary and Space Requirements (for information only)

What additional resources will be required in the following areas:
Faculty
Staff
Library
Audio Visual N/A
Space
Equipment
5. Approval

Date:

Abbreviation Code: BISC_Course Number: 457 Credit Hours: 3 Vector: 3-0-4
Title of Course: Plant Molecular Biology and Biotechnology
Calendar Description of Course:
An introduction to plant molecular biology and the techniques and applications of plant genetic engineering.

Nature of Course

Prerequisites (or special instructions):
BISC 321, or permission of the Department
What course (courses), if any, is being dropped from the calendar if this course is approved:
2. Scheduling

How frequently will the course be offered? Once every year
Semester in which the course will first be offered? N/A
Which of your present faculty would be available to make the proposed offering possible? Dr. A.R. Kermode.
3. Objectives of the Course

This lecture/laboratory course will provide the student with a thorough understanding of the principles and practice of plant molecular biology. Emphasis will be upon the techniques and applications of plant genetic engineering. The procedures for plant transformation, beginning with tissue culture followed by foreign gene introduction, and regeneration and analysis of transformants, will be reviewed. Several examples of agronomic traits which have been successfully engineered in plants will be used to illustrate how genes are cloned, constructs made, genes introduced, and the transformants evaluated for gene expression.
4. Budgetary and Space Requirements (for information only)

What additional resources will be required in the following areas:
Faculty
Staff $\quad 1$ laboratory instructor is presently available
Library Journals: (1) The Plant Journal is currently on order by the library. The journals Plant Molecular Biology \& Transgenic Research are not absolutely essential. Audio Visual

Lecture room with overhead projector and slide projector (for approx. 30 students
Space Teaching laboratory in new building
Equipment Table top centrifuge, electroporator, laminar flow hood, gene gun
5. Approval

E. Summary of Course Deletions
E. 1 Delete STAT 102-3
E. 2 Delete MACM 216-3
E. 3 Delete MACM 401-3
E. 4 Delete MACM 402-3
E. 5 Delete BISC 201-3
E. 6 Delete BISC 203-3
E. 7 Delete BISC 301-3
E. 8 Delete BISC 401-3
E. 9 Delete ACMA 330-3
E. 10 Delete ACMA 340-3

MEMORANDUM

> W.A.C. Bennett Library, Simon Fraser University Burnaby, British Columbia, Canada V5A 1S6

Date: 7 October, 1993
From: Ralph Stanton (Collections Librarian)
To: Harvey Gerber, Department of Mathematics and Statistics

Re: Library Course Assessment for stat 301

- I -have assessed the Library's ability to support STAT 301 here are the results.

STAT 301-3 statistics for the rife Sciences.

This course, which is a replacement for STAT 102-3, will first be offered in 94-3, then twice a year after that. There is one textbook listed on the course outline and it is in the Library collection. The Library's holdings were compared with those of other B.C. Universities in the subject Mathematical Statistics and we have 442 titles to UBC's 347 and U-VIC's 158. There is no need to alter the Library collection profile.

THERE ARE NO LIBRARY COSTS ASSOCIATED WITH THIS COURSE.

Please contact me to discuss this assessment if you have any concerns or questions (Phone 5946).
c.c. Sharon Thomas, Head, Library Collections Management

SIMON FRASER UNIVERSITY
 W.A.C. BENNETT LIBRARY
 MEMORANDUM

To: Gary Parker
Mathematics/Statistics

Subject: ACMA courses

From: Sharon Thomas
Head, Library Collections

cc:

The proposed changed to the ACMA courses are not substantive and do not reflect any changes which would affect the Library. I see no additional expenditures arising out of these amendments.

SIMON FRASER UNIVERSITY

MEMORANDUM

| To: J. Osborne | | |
| :--- | :--- | :--- | :--- |
| Chair, SCUS | Date: | October 27, 1993 |
| From: | Katherine Heinrich
 Chair, Department of
 Mathematics \& Statistics | |
| Subject: MATH 171, 172 | | |

The Department of Mathematics and Statistics accepts the responsibility of supplying copies of the MAPLE manual to the library (to a maximum cost of $\$ 235$).

TO: Dr. David Boal, Chair Faculty of Sciences Undergraduate Curriculum Committee

FROM: Ralph Stanton (Library Collections Management Office)
RE: Library Assessment of New Course Proposals:
RISC 333 Developmental Biology
BISC 406 Marine Biology and Oceanography
BISC 457 Plant Molecular Biology and Biotechnology
DATE: 26 October, 1993

BISC 333. Developmental Biology

This course will be offered twice per year beginning in 95-1 to about 30 students. This course is a modification of BIS 203.

The average cost of books in this subject is $\$ 70$ (BNA93p.24)
B.C. UNIVERSITY LIBRARY COMPARISON

We have compared our holdings to those of U-VIC and UBC in subject headings associated with this course as follows:

	VIC	UBS	SF
Embryology			
Echinodermata	19	240	90
Vertebrates	3	7	7
Cells	12	64	39
Cell Differentiation		13	161
Genomes	16	48	
		1	55
		-2	-7

PEER GROUP COMPARISON

We developed a comparison of our holdings to a peer group for a 10 year period (top 80%) using the Amigos collection development system for selected Library of Congress call numbers associated with the subjects noted in the previous table, as follows:

Peer Group SFU Gap +or-
QL995
QL381
8
QL605
3
QH581
QH607
QH447

	Peer Group	SFU	Gap +or
	8		
	3	3	2
	5	3	0
	26	16	2
	19	17	10
Totals	4	4	2
	65	---	---
		49	$16 *$

The gap with UBC is large and probably expected but the gap with the peer group is not significant for the 10 year time period. We would like the Biological Sciences Department to look over the enclosed lists to see if there are any vital resources which must be bought. Otherwise there are no costs attached to this course.

THERE ARE NO COSTS ASSOCIATED WITH THIS COURSE.

BISC 406 Marine Biology and Oceanography
This course will be offered every second year beginning in 94-3 to about 24 students.

The average cost of books in this subject is $\$ 70$ (BNA93p.24).

The required textbook for this course is in the Library. There is no reading list associated with this course.

B.C. UNIVERSITY LIBRARY COMPARISON

We have compared our holdings to those of U-VIC and UBC in subject headings associated with this course as follows:

UVIC UBC SFU

Marine Biology	43	179	75	
Estuarine Ecology	9	23	10	
Marine Plankton	5	18	11	
Biological Diversity		6	21	6
		--	--	--
	Total	63	241	102

PEER GROUP COMPARISON

We developed a comparison of our holdings to a peer group for a 10 year period (top 80%) using the Amigos collection development system for selected Library of Congress call numbers associated with the subjects noted in the previous table, as follows:
Peer Group SFU Gap +or-

QH91		18	11
QH451	2	0	7
		-	-
	Totals	20	11

The gap with UBC is large and probably expected but the gap with the peer group is not significant for the 10 year time period. We would like the Biological Sciences Department to look over the enclosed lists to see if there are any vital resources which must be bought. Otherwise there are no costs attached to this course.

THERE ARE NO COSTS ASSOCIATED WITH THIS COURSE.

RISC 457 Plant Molecular Biology and Biotechnology

This course will be offered annually with a start date to be announced to about 20 students.

The average cost of books in this subject is $\$ 70$ (BNA93p.24). The two texts in the course outline are in the Library catalogue, one is on loan and we would like to purchase an added copy for $\$ 70$.

B.C. UNIVERSITY LIBRARY AND AMIGOS COMPARISON

In the original version of this assessment dated 26 October 1993 we developed comparisons to B.C. libraries and using the Amigos system. This process revealed gaps which we proposed to fill. However, the course instructor Alison Kermode informed us 29/10/93 that the Library collection is more than adequate and that no further resources are required either in monographs or serials.

Lin Kemp also noted $28 / 10 / 93$ that none of the material in the gap lists is required for this course and that the texts listed in the outline are no longer used. However one title is on loan at the present time and this indicates its usefulness while its presence in the course outline indicates that it has been associated with this course. We continue to want to buy an added copy of this text at $\$ 70$
but we do not think that any disagreement on this point should hold up this course.

SERIALS

The Library holds the serial Plant Journal and Plant Molecular Biology but not Transgenic Research (\$N/A). The New Course Proposal form indicates that this resource is not absolutely essential, we agree.

COST SUMMARY:
THE ONE TIME COST ASSOCIATED WITH THIS COURSE IS \$70. THE RECURRING COST_ASSOCIATED WITH-THIS-COURSE IS- $\$ 000-T R A N S F E R$ FROM BASE.

* Bibliographical lists of these gap titles have been included with the original assessments.

Please call me if you have any questions or problems you would like to discuss (5946).

RS
c.c. Sharon Thomas, Library

Alison Kermode Lin Kemp

[^0]: -additional requirements as specified by the major program

