| 8888 University Drive, Burnaby, BC | TEL: 778.782 .4636 | avpcio@sfu.ca |
| :--- | :--- | :--- |
| Canada V5A 1S6 | FAX: 778.782 .5876 | www.sfu.ca/vpacademic |



## For information:

Acting under delegated authority at its meeting of February 4, 2010, SCUS approved the following curriculum revisions:

## 1. Department of Mathematics (SCUS 10-05e)

(i) Changes to Beginning Level Requirements
(ii) Changes to upper and lower division requirements in various Math programs:

- Applied Mathematics Major \& Honours,
- Industrial Mathematics,
- Mathematics Major and Honours,
- Mathematics \& Computing Science (MACM) Joint Major and Joint Honours
(iii) Prerequisite, description and title changes to MATH 100, 130, 151, 198, 208, 242, 251, 302, 303, $304,310,340,402,152,232,240,154,155,467$ and 308

2. Department of Physics (SCUS 10-11a)
(i) Changes to the Upper Division requirements for the Mathematical Physics Honors Program
(ii) Changes to the Program Requirements for the Biological Physics Major Program
(iii) Changes to the Lower and Upper Division requirements for the Chemical Physics Major and Honors Programs
3. Department of Statistics \& Actuarial Science (SCUS 10-11b)
(i) Prerequisite change to STAT 302
4. Department of Earth Sciences (SCUS 10-11c)
(i) New course proposal:

EASC 405-3, Water Cycles and Resources: Environmental and Climate Change Impacts

Senators wishing to consult a more detailed report of curriculum revisions may do so on the Web at http://www.sfu.ca/senate/Senate agenda.html following the posting of the agenda. If you are unable to access the information, please call 778-782-3168 or email bgrant@sfu.ca.

SCUS 10-05e
(REVISED)
FACULTY OF SCIENCE

## Department Of Mathematics

## mailing address

Dr. Bill Kane
Dr. Rolf Mathews
Senate Committee on
Undergraduate Studies
Simon Fraser University

January 19, 2010
Dear Senate Committee on Undergraduate Studies,
Please find below the Math Department's comments on their proposed prerequisite changes for the 2010/2011 calendar:

Comments on Changes to Pre-requisites for 2010/2011 calendar
---

MATH 100: clarifying BC 12 prerequisite to explicitly state SFU FAN credit.

Implications: There is no real change to the pre-requisite. But students are often confused about the Q-requirement for MATH 100 -- this explicitly states this policy as a pre-requisite.

Background: The SFU Q-requirement means that eligibility for MATH 100 is a $70 \%$ grade in BC 12 -- the SIMS programming for this is a C in BC 12 AND SFU FAN credit.
contact info
Tom Archibald
Mathematics Chair
tarchi@sfu.ca
David Muraki
Math Undergraduate Studies
Committee Chair
dmuraki@math.sfu.ca;
Mindy Ogden
Undergraduate Secretary
e-mail: mathusec@sfu.ca
phone: 778.7823332
return mailing address Department Of Mathematics Simon Fraser University 8888 University Drive Burnaby, BC V5A iS

MATH 151-3: Math 100 (pre-calc) pre-requisite increased from B- to B.
Implications: This does not change the eligibility for first-year calculus. Students with B- in MATH 100 can still enroll in the MATH $150-4$ version of Calc I. Alternatively, students can still qualify for Math 151-3 with a satisfactory score on the Calculus Readiness test.

Background: There are two versions of the first-term calculus courses for the main science (Talc III) stream: these are MATH 150-4 and 151-3. Both courses cover the same material, but the MATH 150-4 sections have an additional lecture hour for the benefit of students with weaker mathematical backgrounds. Although our original intent was to have students self-select for the extra lecture hour (based on advising, and the first-week diagnostic test), this has proven to be infeasible -- an unintended consequence of the additional credit is the accompanying increase in the tuition expense to the student. Many students choose to gamble with the less costly choice.

Despite our advising efforts, we feel it necessary to direct the students' $150 / 151$ choice via pre-requisites.

MATH 152: MATH 154 pre-requisite increased from C- to B.
MATH 251: MATH 155 pre-requisite increased from C - to B .
Implications: Students switching from the BIO-SCI calculus stream will now need a minimum grade of B to move onto Calc II or Calc III within the Pre- Calc III stream.

Background: For the 2009/2010 calendar year, the BC 12 requirements for the first-term calculus courses (Calc III stream) were increased MATH 150-4 (to $\mathrm{B}+$ ) and 151-3 (to A -). This change was precipitated by the removal of the BC provincial Mathematics Exam as an SFU entry requirement, after which there was a measureable change (at SFU \& UBC) in the correlation between BC 12 grades and success in MATH $150 \& 151$. However, there was no noticeable change in the applied calculus streams (bio-science calc I, MATH 154; and business calc I, MATH 157), and so those BC 12 prerequisites were left unchanged (at $B$ ).

In this past year, we have noticed instances of students with grades of $B$ in BC 12, attempting to by-pass their shortfall in the $150 / 151$ science calc prerequisites through the applied calculus streams. Furthermore, we have also heard that some non-science advisors have been suggesting the applied calculus courses for students at the three-time failure limit in 150/151/152. We feel that pre-requisite grades of B in 154/155 for changing calculus streams should provide adequate discouragement for students trying to game the system, while maintaining standards that best serve those who are sincerely changing their major of study.

## Overall comments

When the background system alters (as in the case of recent changes to curriculum and examination procedures in BC high schools) it often takes a while for all of the implications to be sorted out. The adjustments presented here are minor and the necessity of them was not anticipated initially due to the relatively small number of students implicated.

FACULTY OF SCIENCE

The department recently sent a recommendation to Student Services for a certain set of responses to yet another change in high school mathematics. That recommendation was in part based on the fact that we are able to set prerequisites in order to ensure that students have some possibility of passing courses to which they are initially to be admitted. We therefore count on SCUS to understand that we are attempting to exercise our best judgement, based on how students are doing in the courses.

Sincerely,
Dr. Thomas Archibald
Mathematics Chair
and
Dr. David Murkai
Mathematics Undergraduate Studies Committee Chair

## Department of Mathematics

## Beginning Level Requirements

## From:

## MATH 100

BC principles of mathematics 11 (or equivalent) with a grade of at least $B$ - or Simon Fraser University FAN X99 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Quantitative Placement Test...

## MATH 151

$B C$ principles of mathematics 12 (or equivalent) with a grade of at least $A$; or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test.

MATH 150, 154, 157
BC principles of mathematics 12 (or equivalent) with a grade of at least $B$; or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test.

To:

## MATH 100

$B C$ principles of mathematics 11 (or equivalent) with a grade of at least $B$-, or $B C$ principles of mathematics 12 (or equivalent) with a grade of at least C and SFU FAN credit. or SFU FAN X99 course with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Quantitative Placement Test.

MATH 151
$B C$ principles of mathematics 12 (or equivalent) with a grade of at least $A$, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test.

MATH 150
$B C$ principles of mathematics 12 (or equivalent) with a grade of at least $B+$ (75\%): or MATH 100 with a grade of at least B-. or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test.

MATH 154, 157
$B C$ principles of mathematics 12 (or equivalent) with a grade of at least $B$; or MATH 100 with a grade of at least $C$, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test.

## Department of Mathematics

## Applied Mathematics Major Program

## FROM:

## Applied Mathematics Major Program

## Lower Division Requirements

Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II
and all of
MACM 202-4 Mathematical Modeling and Computation
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis I
MATH 251-3 Calculus III
MATH 252-3 Vector Calculus
PHYS 211-3 Intermediate Mechanics
STAT 270-3 Introduction to Probability and Statistics

Note: With a $C$ grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 or 158 for MATH 152.
Also, with a B grade or better, MATH 232 for MATH 240.
However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

## Upper Division Requirements

Students complete all of
MACM 316-3 Numerical Analysis I
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Boundary Value Problems
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 418-3 Partial Differential Equations
plus at least one of
MATH 461-3 Continuous Mathematical Models

MATH 462-3 Fluid Dynamics
plus at least two of
MACM 401-3 Introduction to Computer Algebra
MACM 409-3 Numerical Linear Algebra and Optimization
MACM 416-3 Numerical Analysis II
MATH 308-3 Introduction to Optimization
MATH 309-3 Continuous Optimization

TO:

## Applied Mathematics Major Program

## Lower Division Requirements

Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II
or
CMPT 128-3 Introduction to Computing Science and Programming for Engineers
and all of
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis I
MATH 251-3 Calculus III
MATH 252-3 Vector Calculus
PHYS 211-3 Intermediate Mechanics
STAT 270-3 Introduction to Probability and Statistics
and either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics

Note: With a B grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 or 158 for MATH 152.
Also, with a B grade or better, MATH 232 for MATH 240.
However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

* If necessary, and subject to prior program approval, this computing requirement
may be satisfied by completing one of MACM 401, 409, 416, or MATH 461, 462.

467, 470, 495. This course cannot be used to satisfy other upper-division degree requirements.

## Upper Division Requirements

Students complete all of
MACM 316-3 Numerical Analysis I
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Introduction to Fourier Methods and Partial Differential Equations
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 418-3 Partial Differential Equations
plus at least one of
MATH 461-3 Continuous Mathematical Models
MATH 462-3 Fluid Dynamics
plus at least two of
MACM 401-3 Introduction to Computer Algebra
MACM 409-3 Numerical Linear Algebra and
Optimization
MACM 416-3 Numerical Analysis II
MATH 308-3 Linear Optimization
MATH 309-3 Continuous Optimization

## Department of Mathematics

## Applied Mathematics Honors Program

## FROM:

Lower Division Requirements<br>Students complete either<br>CMPT 126-3 Introduction to Computer Science and Programming or both of<br>CMPT 120-3 Introduction to Computing Science and Programming I<br>CMPT 125-3 Introduction to Computing Science and Programming II<br>and all of<br>CMPT 225-3 Data Structures and Programming<br>MACM 202-4 Mathematical Modeling and Computation<br>MATH 152-3 Calculus II<br>MATH 240-3 Algebra I: Linear Algebra<br>MATH 242-3 Introduction to Analysis I<br>MATH 251-3 Calculus III<br>MATH 252-3 Vector Calculus<br>PHYS 125-3 Mechanics and Special Relativity<br>PHYS 126-3 Electricity, Magnetism and Light<br>PHYS 211-3 Intermediate Mechanics<br>STAT 270-3 Introduction to Probability and Statistics and one of MATH 150-4 Calculus I with Review<br>MATH 151-3 Calculus I

Note: With a $C$ grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 or 158 for MATH 152. Also, with a B grade or better, MATH 232 for 240 . However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

## Upper Division Requirements

Students complete all of
MACM 316-3 Numerical Analysis I
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Boundary Value Problems
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 418-3 Partial Differential Equations
plus at least six additional courses chosen from
MACM 409-3 Numerical Linear Algebra and Optimization
MACM 416-3 Numerical Analysis II
MATH 308-3 Introduction to Optimization
MATH 309-3 Continuous Optimization
MATH 338-3 Advanced Linear Algebra

To:
Lower Division Requirements
Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II
or
CMPT 128-3 Introduction to Computing Science and Programming for Engineers
and all of
CMPT 225-3 Data Structures and Programming
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis I
MATH 251-3 Calculus III
MATH 252-3 Vector Calculus
PHYS 125-3 Mechanics and Special Relativity
PHYS 126-3 Electricity, Magnetism and Light
PHYS 211-3 Intermediate Mechanics
STAT 270-3 Introduction to Probability and Statistics and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
and either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Compuling with Linear Algebra
MACM 204-2 Compuling with Calculus
MATH 294-2 Computational Studies in Mathematics

Note: With a B grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 or 158 for MATH 152. Also, with a B grade or better, MATH 232 for 240 . However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

* If necessary, and subject to prior program approval, this computing requirement may be satisfied by completing one of MACM 401, 409, 416, or MATH 461, 462.

467. 470,495 . This course cannot be used to satisfy other upper-division degree requirements.

## Upper Division Requirements

Students complete all of
MACM 316-3 Numerical Analysis I
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Introduction to Fourier Methods and Partial Differential Equations
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 418-3 Partial Differential Equations
plus at least six additional courses chosen from
MACM 409-3 Numerical Linear Algebra and Optimization
MACM 416-3 Numerical Analysis II
MATH 308-3 Linear Optimization
MATH 309-3 Continuous Optimization
MATH 338-3 Advanced Linear Algebra

## Department of Mathematics

## Industrial Mathematics

## FROM:

...
Major Program

Lower Division Core Requirements
Students complete either
CMPT 126-3 Introduction to Computer Science and
Programming
or both of
CMPT120-3 Introduction to Computer Science and
Programming 1
CMPT 125-3 Introduction to Computer Science and
Programming II
*with a grade of $C$ or better, these substitutions are permitted: MATH 154 or 157 for 151 (or 150); MATH155 or 158 for MATH 152. With a grade of B or better, MATH 232 for MATH 240.

## Area Requirements:

Students complete the requirements for one of option $A, B$ or $C$.
Option A: Operations Research and Applied Statistics (offered at Simon Fraser University Surrey)
For this option, students must complete all of MATH 208-3 Introduction to Operations Research MATH 308-3 Introduction to Optimization MATH 309-3 Continuous Optimization

## Table I

ACMA 445-3 Loss Models: Estimation and Selection*
BUEC 433-5 Forecasting in Business and Economics
STAT 390-3 Selected Topics in Probability and Statistics

STAT 400-3 Data Analysis<br>STAT 402-3 Generalized Linear and Nonlinear Modelling<br>STAT 410-3 Statistical Analysis of Sample Surveys<br>STAT 430-3 Statistical Design and Analysis of Experiments<br>STAT 460-3 Bayesian Statistics<br>STAT 490-3 Selected Topics in Probability and Statistics<br>*students must meet the entry requirements for the actuarial science program to enrol in this course

Table II:

Option B: Scientific Computing (offered at the main Burnaby campus)
For this option students must complete all of MACM 202-4 Mathematical Modeling and Computation
MACM 316-3 Numerical Analysis I
MACM 409-3 Numerical Linear Algebra and Optimization
MATH 252-3 Vector Calculus
MATH 308-3 Introduction to Optimization
MATH 310-3 Introduction to Differential Equations...
MATH 314-3 Boundary Value Problems
MATH 402-4 Industrial Mathematics Project
MATH 418-3 Partial Differential Equations
plus two of
MACM 416-3 Numerical Analysis II
MATH 309-3 Continuous Optimization
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 462-3 Fluid Dynamics
MATH 467-3 Dynamical Systems
MATH 470-3 Variation Calculus
plus two additional courses from Table II below.

## Option C: Discrete Mathematics

(offered at the main Burnaby campus)
For this option, students must complete all of
MACM 201-3 Discrete Mathematics II
MACM 202-4 Mathematical Modeling and Computation
MACM 316-3 Numerical Analysis I
MATH 308-3 Introduction to Optimization
MATH 310-3 Introduction to Differential Equations
MATH 340-3 Algebra II: Rings and Fields
MATH 343-3 Applied Discrete Mathematics
MATH 345-3 Introduction to Graph Theory
plus two of
MACM 401-3 Introduction to Computational Algebra
MACM 442-3 Cryptography

MATH 408-3 Discrete Optimization
MATH 447-4 Coding Theory
plus two additional courses from Table III below.

## Table III

MACM 316-3 Numerical Analysis I
MACN 401-3 Introduction to Computational Algebra
MACM 409-3 Numerical Linear Algebra
MACM 416-3 Numerical Analysis II
MACM 442-3 Cryptography
MATH 309-3 Continuous Optimization
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Boundary Value Problems
MATH 320-3 Introduction to Analysis II

MATH 438-3 Linear Algebra
MATH 443-3 Combinatorial Theory
MATH 445-3 Graph Theory
MATH 447-4 Coding Theory

## то:

## Major Program

Lower Division Core Requirements
Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I CMPT 125-3 Introduction to Computing Science and Programming II or CMPT 128-3 Introduction to Computing Science and Programming for Engineers
*with a grade of B or better, these substitutions are permitted: MATH 154 or 157 for 151 (or 150); MATH155 or 158 for MATH 152. With a grade of B or better, MATH 232 for MATH 240.

## Area Requirements:

Students complete the requirements for one of option $A, B$ or $C$.
Option A: Operations Research and Applied Statistics (offered at Simon Fraser University Surrey)
For this option, students must complete all of
MATH 208-3 Introduction to Operations Research
MATH 308-3 Linear Optimization
MATH 309-3 Continuous Optimization

## Table I

ACMA 445-3 Loss Models: Estimation and Selection*
BUEC 433-5 Forecasting in Business and Economics**
STAT 390-3 Selected Topics in Probability and Statistics
STAT 400-3 Data Analysis
STAT 402-3 Generalized Linear and Nonlinear Modelling
STAT 410-3 Statistical Analysis of Sample Surveys
STAT 430-3 Statistical Design and Analysis of Experiments
STAT 460-3 Bayesian Statistics
STAT 490-3 Selected Topics in Probability and Statistics
*students must meet the entry requirements for the actuarial science program to enrol in this course
** Prerequisite: BUEC 333 and 60 credit hours

Table II:

Option B: Scientific Computing
(offered at the main Burnaby campus)
For this option students must complete all of MACM 316-3 Numerical Analysis I
MACM 409-3 Numerical Linear Algebra and Optimization
MATH 252-3 Vector Calculus
MATH 308-3 Linear Optimization
MATH 310-3 Introduction to Differential Equations...
MATH 314-3 Introduction to Fourier Methods and Partial Differential Equations
MATH 402-4 Industrial Mathematics Project
MATH 418-3 Partial Differential Equations
plus two of
MACM 416-3 Numerical Analysis II
MATH 309-3 Continuous Optimization
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 462-3 Fluid Dynamics
MATH 467-3 Dynamical Systems
MATH 470-3 Variation Calculus
plus either*
MACM 202-4 Mathematical Modeling and Computation or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics
plus two additional courses from Table III below.
Option C: Discrete Mathematics
(offered at the main Burnaby campus)
For this option, students must complete all of
MACM 201-3 Discrete Mathematics II
MACM 316-3 Numerical Analysis I
MATH 308-3 Introduction to Optimization
MATH 310-3 Introduction to Differential Equations
MATH 340-3 Algebra II: Rings and Fields
MATH 343-3 Applied Discrete Mathematics
MATH 345-3 Introduction to Graph Theory
plus two of
MACM 401-3 Introduction to Computational Algebra
MACM 442-3 Cryptography
MATH 408-3 Discrete Optimization
MATH 447-3 Coding Theory
plus either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics
plus two additional courses from Table III below.

* If necessary, and subject to prior program approval. this computing requirement may be satisfied by completing one of MACM 401. 409. 416. or MATH 461, 462. $467,470,495$. This course cannot be used to satisfy other upper-division degree requirements.

Table III

MACM 316-3 Numerical Analysis I
MACM 401-3 Introduction to Computational Algebra
MACM 409-3 Numerical Linear Algebra
MACM 416-3 Numerical Analysis II

MACM 442-3 Cryptography
MATH 309-3 Continuous Optimization
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 314-3 Introduction to Fourier Methods and Partial Differential Equations
MATH 320-3 Introduction to Analysis II

MATH 438-3 Linear Algebra
MATH 443-3 Combinatorial Theory
MATH 445-3 Graph Theory
MATH 447-3 Coding Theory

## Department of Mathematics

## Mathematics Major and Honors Programs

## FROM:

## Lower Division Requirements

Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II
and all of
MACM 101-3 Discrete Mathematics I
MACM 201-3 Discrete Mathematics II
MACM 202-4 Mathematical Modeling and Computation
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis I
MATH 251-3 Calculus III
STAT 270-3 Introduction to Probability and Statistics
and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
Note: With a C grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151, MATH 155 or 158 for MATH 152. Also, with a B grade or better, MATH 232 for 240. However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

## Upper Division Requirements

and at least one from each of the following four groups of courses.
MATH 308-3 Introduction to Optimization
MATH 343-3 Applied Discrete Mathematics
MATH 345-3 Introduction to Graph Theory

## TO:

## Lower Division Requirements

## Students complete either <br> CMPT 126-3 Introduction to Computer Science and Programming or both of <br> CMPT 120-3 Introduction to Computing Science and Programming I <br> CMPT 125-3 Introduction to Computing Science and Programming II <br> or <br> CMPT 128-3 Introduction to Computing Science and Programming for Engineers

and all of
MACM 101-3 Discrete Mathematics I
MACM 201-3 Discrete Mathematics II
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis I
MATH 251-3 Calculus III
STAT 270-3 Introduction to Probability and Statistics

```
and either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics
and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
```

Note: With a B grade or better in the relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151, MATH 155 or 158 for MATH 152. Also, with a B grade or better, MATH 232 for 240. However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240.

* If necessary, and subject to prior program approval, this computing requirement may be satisfied by completing one of MACM 401, 409. or MATH 439. This course cannot be used to satisfy other upper-division degree requirements.


## Upper Division Requirements

and at least one from each of the following four groups of courses.

MATH 308-3 Linear Optimization
MATH 343-3 Applied Discrete Mathematics
MATH 345-3 Introduction to Graph Theory

## Mathematics and Computing Science (MACM) Joint Major and Joint Honors Program

## FROM:

## Lower Division Requirements

Joint Major Program
Students complete either
CMPT 126-3 Introduction to Computer Science and Programming or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II and all of
CMPT 150-3 Introduction to Computer Design
CMPT 225-3 Data Structures and Programming
MACM 101-3 Discrete Mathematics I
MACM 201-3 Discrete Mathematics II
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis
MATH 251-3 Calculus III
STAT 270-3 Introduction to Probability and Statistics
plus one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
plus one of
CMPT 275-4 Software Engineering
MACM 202-4 Mathematical Modeling and Computation
Note: With a $C$ grade or better in relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 of 158 for MATH 152.
Also, with a B grade or better, MATH 232 for MATH 240. However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240. In addition, students must complete writing and breadth requirements in accordance with th regulations of both the department and the school.

## Joint Honors Program

Students pursuing the MACM joint honors program must complete both of the following courses as well as the remaining requirements of the MACM major. CMPT 275-4 Software Engineering

MACM 202-4 Mathematical Modeling and Computation

## Upper Division Requirements

## Joint Major Program

plus one of
MATH 308-3 Introduction to Optimization
MATH 309-3 Continuous Optimization

Lower Division Requirements

## Joint Major Program

Students complete either
CMPT 126-3 Introduction to Computer Science and Programming
or both of
CMPT 120-3 Introduction to Computing Science and Programming I
CMPT 125-3 Introduction to Computing Science and Programming II
or
CMPT 128-3 Introduction to Computing Science and Programming for Engineers
and all of
CMPT 150-3 Introduction to Computer Design
CMPT 225-3 Data Structures and Programming
MACM 101-3 Discrete Mathematics I
MATH 152-3 Calculus II
MATH 240-3 Algebra I: Linear Algebra
MATH 242-3 Introduction to Analysis
MATH 251-3 Calculus III
STAT 270-3 Introduction to Probability and Statistics
and either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics
plus one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
plus one of

CMPT 275-4 Software Engineering
MACM 202-4 Mathematical Modeling and Computation
Note: With a B grade or better in relevant course, these substitutions are permitted: MATH 154 or 157 for MATH 151; MATH 155 of 158 for MATH 152.
Also, with a B grade or better, MATH 232 for MATH 240. However, where possible, students are strongly encouraged to complete MATH 151, 152 and 240. In addition, students must complete writing and breadth requirements in accordance with th regulations of both the department and the school.

* If necessary, and subject to prior program approval, this computing requirement may be satisfied by completing one of MACM 401, 409. or MATH 439. This course cannot be used to satisfy other upper-division degree requirements.


## Joint Honors Program

Students pursuing the MACM joint honors program must complete of the following courses as well as the remaining requirements of the MACM major.
CMPT 275-4 Software Engineering
and either *
MACM 202-4 Mathematical Modeling and Computation
or two of
MACM 203-2 Computing with Linear Algebra
MACM 204-2 Computing with Calculus
MATH 294-2 Computational Studies in Mathematics

* If necessary, and subject to prior program approval, this computing requirement may be satisfied by completing one of MACM 401, 409, or MATH 439. This course cannot be used to satisfy other upper-division degree requirements.


## Upper Division Requirements

Joint Major Program
plus one of
MATH 308-3 Introduction to Optimization
MATH 309-3 Linear Optimization

## EXISTING COURSE, CHANGES RECOMMENDED

Pleasc cheek appropriale revision(s)

| $\square$ Course number $\square$ Credit $\square$ Title | $\square$ Description | $\square$ Prerequisite | $\square$ Deletion |
| :--- | :--- | :--- | :--- |
| Indicate number of hours for: Lecture | Seminar | Tutorial |  |

## FROM :

Course Number $\qquad$ MATH 100-3 $\qquad$
 Credil llour $\qquad$ -

Course Number

## TO:

 Credit llour
## TITLE

(1) long titk for calendar and schedule, no more than 100 characters including spaces and punctuation.

## Precalculus

(2) Short tite for enrolimem and transcript no more than 30 characters including spaces and punctuation.
$\square$
DESCRIPTION
$\square$

## PREREQUISITE

BC principles of mathematics 11 (or equivalent) with a grade of at least $B-$, or $B C$ principles of mathematics 12 (or equivalent) with a grade of at least C, or SFU FAN X99 course with a grade of at least $B$-. or achieving a satisfactory grade on the Simon Fraser University Quantitative Placement Test. Students with credit for MATH 150 or 151 or 154 or 157 may not take MATH 100 for further credit. MATH 100 may not be counted towards the mathematics minor, major or honors degree requirements. Quantitative.
$\square$


Rationale
$B C$ principles of mathematics 11 (or equivalent) with a grade of at least B -, or BC principles of mathematics 12 (or equivalent) with a grade of at least $C$ and SFU FAN credit, or SFU FAN X99 course with a grade of at least $\mathrm{B}-$ - or achieving a satisfactory grade on the Simon Fraser University Quantitative Placement Test. Students with credit for MATH 150 or 151 or 154 or 157 may not take MATH 100 for further credit. MATH 100 may not be counted towards the mathematics minor, major or honors degree requirements. Quantitative.

To clarify SFU admissions requirements.
Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for hoth courses? If so. this should be noted in the prerequisite.

Please check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description $\square \square$ Prerequisite Deletion

Indicalle number of hours for: Lecture $\qquad$ Seminar $\qquad$ lutorial $\qquad$ .- lab

FROM : TO:

Course Number $\qquad$ MATH 130-3 Course Number $\qquad$ -_-_-_-_

Credit lour $\qquad$ Credit I kur $\qquad$ -___ TITLE
( 1 I ong title fior calendar and schedule. ne more than 100 characters including spaces and puncluation.

## Geometry for Computer Graphics

(2) Short title for enrollment and transeript. no more than 30 characters including spaces and punctuation.
$\square$
$\square$

## DESCRIPTION

$\square$

## PREREQUISITE

Principles of Mathematics 12 or Applications of Mathematics 12, both with a grade of at least B. Quantitative.


Principles of Mathematics 12 or Applications of Mathematics 12, both with a grade of at least B, or Math 100 with a grade of at least C and SFU FAN credit. Quantitative.

## RATIONALE

To make consistent with other first year math courses.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courscs:' If so. this should be noted in the prerequisite.

## EXISTING COURSE, CHANGES RECOMMENDED

Ilease check appropriate revision(s)

(1) Long title for calendar and schedule, no more than loo characters including spaces and punctuation.

## Calculus I

(2) Short title for enrollment and transcript. no more than 30 characters including spaces and punctuation.


DESCRIPTION
$\square$

## PREREQUISITE

$B C$ principles of mathematics 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

BC principles of mathematics 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

## RATIONALE

Increases MATH 100 pre-requisite grade ( $\mathrm{B}-\mathrm{to} \mathrm{B}$ ) to differentiate from Calc I with Review (MATH 150) requirement, which is currently $B$-.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses? If so, this should be noted in the prerequisite.
Effective term and year

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revisionts)

title
(1) long title for calendar and schedule. no more than Ithe characters including spaces and punctuation.

(2) Short title for enrollment and transcript. no more than 30 characters including spaces and punctuation.

## DESCRIPTION

$\square$

## PREREQUISITE

BC Principles of Mathematics 11 (or equivalent) with a grade of at least $C$, taken within the past 10 years, or Simon Fraser University FAN X99 course with a grade of at least $C$. This course is only open for credit to students in the Integrated Studies programs within the Bachelor of General Studies degree. Quantitative.


BC Principles of Mathematics 11 (or equivalent) with a grade of at least $B_{4}$ or Simon Fraser University FAN X99 course with a grade of at least $C$. This course is only open for credit to students in the Integrated Studies programs within the Bachelor of General Studies degree. Quantitative.

## Rationale

To be consistent with other intro-level math courses.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit lor boll courses: If so. this should be noted in the prerequisite.

SENATE COMMITTEE ON

Plealse check appropriate revisionts)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description Prerequisite $\square$ Deletion

Indicate number of hours for: I.ecture $\qquad$ Seminar $\qquad$ Tutorial $\qquad$ L:ab $\qquad$
FROM : TO:

Course Number
MATH 208-3 $\qquad$ Course Number $\qquad$

Credit Ikur $\qquad$ Credit llour $\qquad$

TITLE
(1) Iong title for calendar and schedule. no more than 100 characters including spaces and puncluation.

$\square$
(2) Short tite for enrollment and ranscript. no more than 30 characters including spaces and punctuation.
$\square$
$\square$

## DESCRIPTION

$\square$
PREREQUISITE
MATH 152 or 155 or 158 .
and
CMPT 101 or 104 or 125 or 126 .

MATH 150 or 151 or 154 or 157. Quantitative.

## RATIONALE

To target students early in their studies; in current offering, we've seen that students can handle the software in the course well enough without the CMPT background.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses? If so. this should be noted in the prerequisite.

Effective term and year

EXISTING COURSE, CHANGES RECOMMENDED

Hease check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description $\square$ Prerequisite $\square$ Deletion

Indicate number of hours ior: Lecture $\qquad$ Seminar $\qquad$ Tutorial $\qquad$ Lab $\qquad$
FROM : TO:

Course Number $\qquad$ MATH 242-3 Course Number $\qquad$

Credit llour $\qquad$ Credit Hour $\qquad$
title
(1) I.ong lite for calendar and schedule. no more than 100 characlers inciuding spaces and punctuation.

$\square$
$\square$
DESCRIPTION
$\square$


## PREREQUISITE

MATH 152 or 155 . Quantitative.

MATH 152; or MATH 155 or 158 with a grade of B. Quantitative.

## RATIONALE

Add 155/158 grade to B for program consistency

Does this course replicate the content of a previously approved course to such an estent that students should not receive credit tor both courses:" If so. this should be noted in the prerequisite.

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description $\square$ Prerequisite $\square$ Deletion
Indicale number of hours for: lecture____ Seminar

## FROM :

 TO:Course Number $\qquad$ MATH 251-3 $\qquad$ Course Number $\qquad$ Credil llour $\qquad$
 $\qquad$ Credit Ilour $\qquad$ $-$
title
(1) l.ong title for calendar and schedule. no more ilian 100 characters including spates and punctuation.
$\square$
$\square$
(2) Short title for enrollment and transeript, no more than 30 characters including spaces and puncluation.
$\square$

## DESCRIPTION

$\square$

## PREREQUISITE

MATH 152 or 155; or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.


MATH 152; or MATH 155 or 158 with a grade of at least B . Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

## RATIONALE

Unified pre-requisite grades within both applied calculus streams: calc I 154/157 and calc II 155/158.


EISTING COURSE, CHANGES RECOMMENDED
Course number $\square$ CreditTitle $\square$ Description
PrerequisiteDeletion

Indiatenmber of hours for Lecture $\qquad$ Seminar $\qquad$ Thtorial $\qquad$ Lね $\qquad$
FROM: TO:

Carre Kmb ber
MATH 302 Canse Himber $\qquad$
Credt Hay $\qquad$ Crotir Hiour $\qquad$ tine


## Computing with Mathernatics


$\square$
$\square$

## DESCRIPTION

$\square$
$\square$

## PREREQUISITE

> MATH 152 and 232 of 240 Thete may be additional prerequisites depending on the course's topics. Recommended MacM 202 or equivalent computing experience. Department permission is required to complete this course more than once

$$
\begin{aligned}
& \text { MATH } 152 \text { or } 155 \text { or } 158 \text { and MATH } 232 \text { or } 240 \\
& \text { There maybe additional prerequisites depending } \\
& \text { on the course's topics. Recommended:MACM } \\
& 202,208 \text { or } 204 \text { or equivalent computing } \\
& \text { experience Department permission is required to } \\
& \text { complete this course more than once. } \\
& \text { Quantitative }
\end{aligned}
$$

## RATIONALE

Include applied calculus II.
Addition of MACM $203 / 204$ and MA TH 294 to progr am
 If so, the shauibe noted in the prerequisate
EFective term andenar FALL 2010

## EXISTING COURSE, CHANGES RECOMMENDED

Pleasic check appropriate revisiunts)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description Prerequisite $\square$ Deletion
Indicale number of hours for: l.ecture
$\qquad$ Suminar $\qquad$ Tutorial $\qquad$ 1.al) $\qquad$ _-..

## FROM :

## TO:

Course Number MATH 303-3 Cursic Nuntber $\qquad$ .
$\qquad$
title
(1) long title for calendar and sthedule. no more than 100 characters including spaces and puncluation.

## Perspectives on Geometry

(2) Shor tite for enrollinent and ranscript, no more han 30 characters including spaces and puatidation.
$\square$
$\square$

## DESCRIPTION

$\square$


## PREREQUISITE

MATH 152 and 232 or 240. There may be additional prerequisites depending on the course's topics. Recommended: MACM 202 or equivalent computing experience. Department permission is required to complete this course more than once.

MATH 152 or 155 or 158 and MATH 232 or 240. There may be additional prerequisites depending on the course's topics. Recommended. MACM 202-or-equivalent computing experience. Department permission is required to complete this course more than once. Quantitative.

## RATIONALE

## Include applied calculus II

Does this course replicate the content of a previnusly approved course to suth an extent that statents should mot receive credit far beth courses? if so. Wis should le noted in the prerequisite.

Erliective term and year
FALL 2010

## EXISTING COURSE, CHANGES RECOMMENDED

Pleasce check appropriate revision(s)


TITLE
(1) I.ong tite lior calendar and schedule. not more than l(h) characters including spaces and punctuation.

## Quantifying Uncertainty



$\square$

## DESCRIPTION

$\square$
$\square$

## PREREQUISITE

MATH 152 and 232 or 240 . There may be additional prerequisites depending on the course's topics. Recommended: MACM 202 or equivalent computing experience. Department permission is required to complete this course more than once.
$\qquad$
MATH 152 or 155 or 158 and MATH 232 or 240. There may be additional prerequisites depending on the course's topics. Recommended: MAAM 202 or equivatent computing experience. Department permission is required to complete this course more than once. Quantitative.

## RATIONALE

## Include applied calculus II

Dues this course replicate the contem of a previously approved course to such an evient that students should mon receive credit for hoth courses: If so. this should be moted in the prerequisite.
Effective term and year
FALL 2010

## EXISTING COURSE, CHANGES RECOMMENDED

Iflease check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description $\square$ Prerequisite Deletion Indicate number of hours for: Lecture $\qquad$ Seminar $\qquad$ I utorial $\qquad$
$\qquad$ lab $\qquad$ .

FROM : TO:

Course Number $\qquad$ MATH 310-3 Course Number $\qquad$

Credil llour $\qquad$
$\qquad$ Credit llour $\qquad$ _-_ $\qquad$

TITLE
( ) I.ong title for calendar and schedule, no more than 100 characters including spaces and punctuation.

## Introduction to Ordinary Differential Equations

$\square$
(2) Short title for enrollment and transeript. no more than 30 characters including spaces and punctuation.
$\square$
$\square$

## DESCRIPTION

$\square$
PREREQUISITE
MATH 152 or 155 (or MATH 158 with a grade of A or B) and MATH 240 or 232. Quantitative.


MATH 152; or MATH $155 / 158$ with a grade of at least B. MATH 232 or 240.

## RATIONALE

Change applied calculus grade for program consistency.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses.? If so. this should be noted in the prerequisite.

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description $\quad \square$ Deletion Indicate number of hours for: I.ecture $\qquad$ Seminar $\qquad$ Tutorial $\qquad$ lab $\qquad$

## FROM :

## TO:

Course Number $\qquad$
MATH 340-3 $\qquad$ Course Number

Credit llour $\qquad$
$\qquad$ Credit I lour $\qquad$ -_. $\qquad$ . -

TITLE
(1) I.ong title for calendar and schedule, no more than l(0) characters including spaces and punctuation.

## Algebra II: Rings and Fields

(2) Short title for enrollment and transcriph. no more than 30 characters including spaces and punctuation.
$\square$
$\square$

## DESCRIPTION

$\square$

## PREREQUISITE



> MATH 240 (or MATH 232 with a grade of
at least B). Students with credit for MATH
> MATH 240 (or MATH 232 with a grade of
at least B). Students with credit for MATH 322 cannot take MATH 340 for further credit.

MATH 240 (or MATH 232 with a grade of at least B). Students with credit for MATH 332 cannot take MATH 340 for further credit. Quantitative.

## RATIONALE

Typo Correction.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses? It so, this should be noted in the prerequisite.

Itfective lerm and year

## EXISTING COURSE, CHANGES RECOMMENDED

Plasis chech appropriate ivision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\square$ Description Prerequisite Deletion $\square$

| Indicate number of hours lior: l.ecture | Seminar | Tutorial | Lab |
| :---: | :---: | :---: | :---: |

## FROM :

## то:

Course Niumber MATH 402-4 Course Number $\qquad$ Credit

Howr $\qquad$ (redit Ilour $\qquad$
$\qquad$ - -
title
(1) I.ong tite for calcondar and scheduke, no more than 100 characters including spaces and punctuation.

## Industrial Mathematics Project

(2) Short tite for enrollment and transcript, no more than 30 characters including spaces and punctuation.
$\square$
$\square$

DESCRIPTION
$\square$

## PREREQUISITE

MACM 202. 316; MATH 251. 308, 310; STAT
MACM 202 or two of MACM 203, MACM 204 or MATH 294; MACM 316; MATH 251, 308, 310; STAT 285. Quantitative.
$\square$


## RATIONALE

## Addition of MACM 203/204/294 to program

Ders this course replicate the content of a previously approved course to such an extent that students should not receive credit for both counces? If $w$. this should be noted in the prerequisite.

Effective term and year FALL 2010

EXISTING COURSE, CHANGES RECOMMENDED

Hease check appropriate revision(s)


TITLE
(1) Long title for calendar and schedule. no more than I 100 characlers including spaces and punctuation.

$\square$
(2) Short title for enrollment and transcript, no more than 30 characters including spaces and punctuation.
$\square$
$\square$

## DESCRIPTION

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series. Complex numbers.

## PREREQUISITE

MATH 150, 151 or 154 . Students may also use MATH 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take MATH 152 for further credit. Quantitative.

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series.

MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take MATH 152 for further credit. Quantitative.

## RATIONALE

Complex numbers deleted from syllabus -- now taught in MATH 240/232 (Linear Algebra).
Unified pre-requisite grades within both applied calculus streams: calc I 154/157 and calc II 155/158.

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\quad \square$ Description $\square$ Prerequisite $\quad \square$ Detion

Indicate number of hours tor: Lecture $\qquad$ Seminar $\qquad$ Iutorial $\qquad$ Lab $\qquad$
FROM :
TO:

Course Number
MATH 232-3 Course Number $\qquad$

Credit Ilour $\qquad$ Credit Hour $\qquad$
title
(1) Long title for calendar and schedule, no more tham IOO characters including spaces and punctuation.

## Applied Linear Algebra

$\square$
(2) Short title for enrollment and transcript. no more than 30 characters including spaces and punctuation.
$\square$

## DESCRIPTION

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. The course emphasizes matrix and vector calculations and applications.

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations.

## PREREQUISITE

MATH 150 or 151 (or equivalent) or MACM 101 or MATH 154/157 with a grade of at least B. Students with credit for MATH 240 cannot take MATH 232 for further credit. Quantitative.

> MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 cannot take MATH 232 for further credit. Quantitative.

## RATIONALE

Corrects omission in description from current standard syllabus.
Clarifies application-oriented emphasis, in contrast to the more abstract MATH 240.
Removes outdated parenthetical requirement.

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revision(s)
$\square$ Course number $\square$ Credit $\square$ Title $\quad \square$ Description Prerequisite $\square$ Deletion
Indicate number of hours for: Lecture $\qquad$ Seminar $\qquad$ Tutorial $\qquad$ l.ab

## FROM :

## TO:

Course Number
MATH 240-3 Course Number $\qquad$
Credit llour $\qquad$ Credit llour $\qquad$
title
( ) Long title for calendar and schedule, no more than 100 characters including spaces and punctuation.
Algebra I: Linear Algebra
(2) Short title for enrollment and transcript. no more than 30 characters including spaces and puncluation.
$\square$

## DESCRIPTION

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Eigenvalues and eigenvectors; diagonalisation. Inner products and orthogonality; least squares problems. Applications. The course has a more theoretical emphasis than MATH 232, including proving true statements and giving counterexamples.

## PREREQUISITE

MATH 150 or 151 or equivalent or MACM 101 or MATH 154/157 with a grade of at least B+. Students with credit for MATH 232 cannot take MATH 240 or further credit. Quantitative.

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems.

MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take MATH 240 or further credit. Quantitative.

## RATIONALE

Corrects omission in description from current standard syllabus.
Clarifies abstract emphasis, in contrast to the applications-oriented MATH 232.
Removes outdated parenthetical requirement and changes $154 / 157$ grade to $B$ for program consistency.

## EXISTING COURSE, CHANGES RECOMMENDED

Please check appropriate revision(s)

title
(1) I.ong title for calendar and schedule. no more than 100 characters including spaces and punctuation.

Calculus I for the Biological Sciences
(2) Short title for enrollment and transcript. no more than 30 characters including spaces and punctuation.

$\square$

## DESCRIPTION

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; logarithmic, exponential and trigonometric functions and their applications in population study; optimization and approximation methods.

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes.

## PREREQUISITE

$\square$
$\square$

## RATIONALE

Consistent course description for the MATH 154/MATH 155 sequence and deletion of redundant items.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit tor both courses? If so. this should be noted in the prerequisite.

Please check appropriate revision(s)

$\square$Course number $\square$ CreditTitle Description $\square$ Prerequisite

Deletion Indicate number of hours for: Lecture $\qquad$ Seminar $\qquad$ Tutorial $\qquad$ Lab $\qquad$ FROM : Course Number MATH 155-3 то: Course Number $\qquad$ Credit

Hour $\qquad$ Credit Hour $\qquad$

TITLE
(1) Long title for calendar and schedule, no more than 100 characters including spaces and punctuation.

## Calculus II for the Biological Sciences

(2) Short title for enrollment and transcript, no more than 30 characters including spaces and punctuation.

$\square$

## DESCRIPTION

The integral and its applications, partial derivatives, differential equations and their applications in ecology, mathematical models of biological processes.

> Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes.

## PREREQUISITE

$\square$
$\square$

## RATIONALE

Consistent course description for the MATH 154/MATH 155 sequence and deletion of redundant items.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses?
If so, this should be noted in the prerequisite.
Effective term and year Fall 2010

## EXISTING COURSE, CHANGES RECOMMENDED

## Please check appropriate revision(s)



Credit Hour $\qquad$ Credit Hour $\qquad$

TITLE
(1) Long title for calendar and schedule, no more than 100 characters including spaces and punctuation.

Calculus II for the Biological Sciences
(2) Short title for enrollment and transcript, no more than 30 characters including spaces and punctuation.


## DESCRIPTION

The integral and its applications, partial derivatives, differential equations and their applications in ecology, mathematical models of biological processes.


## PREREQUISITE

$\square$
$\square$

## RATIONALE

Consistent course description for the MATH 154/MATH 155 sequence and deletion of redundant items.

Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses? If so, this should be noted in the prerequisite.

## EXISTING COURSE, CHANGES RECOMMENDED

## Please check appropriate revision(s)



FROM : TO:

Course Number $\qquad$ Course Number $\qquad$ -..

Credit Iour $\qquad$ Credit Hour

TITLE
(1) I.ong title for calendar and schedule, no more than 100 characters including spaces and punctuation.

## Dynamical Systems


(2) Short title for enrollment and transeript. no more than 30 characters including spaces and punctuation.

$\square$

## DESCRIPTION

Stability and bifurcation in vector fields and discrete maps. Centre manifold theory and applications of normal forms. Introduction to chaos, Lyapunov exponents, and normal hyperbolicity.

Stability and bifurcation in continuous and discrete dynamical systems, with applications. The study of the local and global behaviour of linear and nonlinear systems, including equilibria and periodic orbits, phase plane analysis, conservative systems, limit cycles, the PoincaréBendixson theorem, Hopf bifurcation and an introduction to chaos.

## PREREQUISITE

$\square$
$\square$

## Rationale

Description updated to reflect current course content.

[^0]EXISTING COURSE, CHANGES RECOMMENDED

Plase check appropriate revision(s)
$\square$ Course number $\square$ Credit Title Description Prerequisite $\square$ Deletion

Indicate number of hours for: Lecture $\qquad$ Scminar $\qquad$ Tutorial $\qquad$ Lab $\qquad$
FROM :
TO:

Course Number $\qquad$
$\qquad$ Course Number $\qquad$

Credit llour $\qquad$ Credit llour $\qquad$ -

## title

(1) I.ong tite for calendar and schedule, no more than 10) characters including spaces and puncluation.

## Introduction to Optimization

## Linear Optimization

(2) Short tite for emrollment and transeript. no more than 30 charaters including spaces and punctuation.
$\square$

## DESCRIPTION

Introduction to Optimization: Convex sets and convex functions. Minimization of convex functions. Lagrange multipliers. Linear programming and duality, Applications and computation.

Linear programming modelling. The simplex method and its variants. Duality theory. Post-optimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets.

## PREREQUISITE

MATH 240 or 232. Recommended: MACM 201. Intended to be particularly accessible to students who are not specializing in mathematics. Quantitative.

Math 150, 151, 154, or 157 and Math 2411 or 232. Quantitative.

## RATIONALE

The title is changed to avoid confusion with the "Introduction to Operations Research" course (Math 208) that was added last year. The description and prerequisites are changed to allow for the optional inclusion of non-linear material.

Does this course replicate the conten of a previously approved course to such an extent that students should not receive credit for both courses:? If so, this should be noted in the prerequisite.

Effective term and year

TO: Bill Krane, Chair, SCUS

RE: Faculty of Science
Undergraduate Curriculum Items

FROM: Rolf Mathewes, Associate Dean
Faculty of Science

The Faculty of Science has approved the following, which must now be considered by SCUS.
Please place these items on the agenda of the next SCUS meeting.

## Physics

Program changes to Mathematical Physics, Biological Physics, Chemical Physics
Mathematical Physics and Biological Physics Programs: Add PHYS 395 as an elective. PHYS 395 is a course in Computational Physics. It has been dormant for a number of years because of faculty retirements, but has now been revitalized. This change will provide students in these programs with more options.

Chemical Physics Programs: Revise wording and introduce a program specific waiver for an alternate prerequisite. The proposed changes in wording eliminate ambiguity in the number of UD units required for these programs. The proposed alternate prerequisite waiver will allow students who take PHYS 285 instead of CHEM 260 to enroll in CHEM 366W. At present, students in these programs are asked to choose between PHYS 285 and CHEM 260, but then need credit for CHEM 260 in order to enroll in CHEM 366W, which is a required course. Current practice is to allow students with credit for PHYS 285 to take CHEM 366W. This proposed change is supported by the Chemistry Undergraduate Studies Committee.

R. Mathews

Enclosures
c. J. Hinchliffe, M. Plischke

# SIMON FRASER UNIVERSITY Program Change Form 

Program: MAPH program<br>Changes for $10 / 41$ calendar<br>Deletions<br>Additions

## Mathematical Physics Honors Program

This program is offered jointly by the Departments of Mathematics and Physics. Entry requires permission of both. Graduates may do graduate work in mathematics or physics depending on interest. Some additional work in either mathematics or physics may be required. Students should speak with an advisor as soon as possible to schedule their programs.

## Lower Division Requirements <br> (46 units)

Students complete one of
CMPT 126-3 Introduction to Computing Science and Programming ${ }^{\text {( }}$ (or CMPT 120 and CMPT 125)
CMPT 102-3 Introduction to Scientific Computer Programming
and all of
MATH 152-3 Calculus II
MATH 242-3 Introduction to Analysis
MATH 251-3 Catculus III
MATH 252-3 Vector Calculus
PHYS 131-2 Physics Laboratory $1^{*}$
PHYS 211-3 Intermediate Mechanics
PHYS 231-3 Physics Laboratory II
PHYS 233-2 Physics Laboratory III
PHYS 255-3 Vibrations and Waves
PHYS 285-3 Introduction to Relativity and Quantum Mechanics
STAT 270-3 Introduction to Probability and Statistics
and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
and one of
MATH 232-3 Applied Linear Algebra
MATH 240-3 Algebra I: Linear Algebra

## and one of

PHYS 120-3 Mechanics and Modern Physics
PHYS 125-3 Mechanics and Special Relativity ${ }^{\dagger}$
PHYS 140-4 Studio Physics - Mechanics and Modern Physics*
and one of
PHYS 121-3 Optics, Electricity and Magnetism
PHYS 126-3 Electricity, Magnetism and Light ${ }^{\text { }}$
PHYS 141-4 Studio Physics - Optics, Electricity and Magnetism ${ }^{\circ}$

[^1]```
Upper Division Requirements
(58 units)
Students complete all of
MACM 316-3 Numerical Analysis I
MATH 310-3 Introduction to Ordinary Differential Equations
MATH 320-3 Introduction to Analysis II
MATH 322-3 Complex Variables
MATH 418-3 Partial Differential Equations
and one of
MATH 419-3 Linear Analysis
MATH 424-3 Complex Analysis
MATH 425-3 Real Analysis
and one of
MATH 461-3 Continuous Mathematical Models
MATH 462-3 Fluid Dynamics
MATH 495-3 Selected Topics in Applied Mathematics
and one of
MACM 401-3 Introduction to Computer Algebra
MACM 416-3 Numerical Analysis II
MATH 467-3 Dynamical Systems
and all of
PHYS 321-3 Intermediate Electricity and Magnetism
PHYS 332W-4 Optics Laboratory
PHYS 344-3 Thermal Physics
PHYS 384-3 Methods of Theoretical Physics I
PHYS 385-3 Quantum Mechanics I
PHYS 413-3 Advanced Mechanics
PHYS 415-3 Quantum Mechanics II
PHYS 421-3 Electromagnetic Waves
PHYS 445-3 Statistical Physics
and two of
PHYS 390-3 Astrophysics
PHYS 395-3 Computational Physics
PHYS 432-5 Undergraduate Honors Thesis
PHYS 455-3 Modem Optics
PHYS 465-3 Solid State Physics
PHYS 484-3 Nonlinear Physics
PHYS 485-3 Particle Physics
PHYS 490-3 General Relativity and Gravitation
```


## Other Requirements

```
Please see "Requirements for Honors and Honors First Class" on page 181. CHEM 121 and 122 should be included among the elective courses.
```

Rationale: The topics and techniques covered in PHYS 395 (Computational Physics) are a natural fit for the Mathematical Physics program, and will provide students with more options.

# SIMON FRASER UNIVERSITY <br> Program Change Form 

## BIPH programs

## Changes for $\mathbf{1 0 / 1 1}$ calendar

Additions
Beletions

## Biological Physics Major Program

This program is designed for students who are interested in using physical approaches to tackle biological problems. Students should speak with an advisor as soon as possible to schadule their programs.

```
Lower Division Requirements
(64 units)
Students must complete all of
BISC 101-4 General Biology
BISC 102-4 General Biology
BISC 202-3 Genetics
CHEM 121-4 General Chemistry and Laboratory I
CHEM 122-2 General Chemistry II
CHEM-284-4-OrganiG-Chemictry
CHEM 281-4 Organic Chemistry I
CHEM 282-2 Organic Chemistry II
MATH 152-3 Calculus II
MATH 251-3 Calculus III
MATH 252-3 Vector Calculus
MBB 222-3 Molecular Biology and Biochemistry
MBB 231-3 Cell Biology and Biochemistry
PHYS 211-3 Intermediate Mechanics
PHYS 231-3 Physics Laboratory II
PHYS 255-3 Vibrations and Waves
and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
and one of
MATH 232-3 Applied Linear Algebra
MATH 240-3 Algebra I: Linear Algebra
and one of
CHEM 260-4 Atoms, Molecules, Spectroscopy
PHYS 285-3 Introduction to Relativity and Quantum Mechanics
and one of
PHYS 101-3 Physics for the Life Sciences I
PHYS 120-3 Mechanics and Modern Physics
PHYS 125-3 Mechanics and Special Relativity }\mp@subsup{}{}{\dagger
PHYS 140-4 Studio Physics - Mechanics and Modem Physics*
and one of
PHYS 101-3 Physics for the Life Sciences II
PHYS 121-3 Optics, Electricty and Magnetism
PHYS 126-3 Electricity, Magnetism and Light'
PHYS 141-4 Studio Physics - Optics, Electricity and Magnetism*
and one of
PHYS 130-2 Physics for the Life Sciences Laboratory
PHYS 131-2 Physics Laboratory I*
*students with credit for PHYS 140 and 141 are not required to take PHYS }13
\dagger}\mathrm{ recommended
```

```
Upper Dtvision Requirements
(40 units)
Students complete all of
MATH 310-3 Introduction to Ordinary Differential Equations
MBB 309W-4 Biochemistry Laboratory
MBB 322-3 Molecular Physiology
MBB 331-3 Molecular Biology
PHYS 321-3 Intermediate Electricity and Magnetism
PHYS 347-3 Introduction to Biological Physics
PHYS 385-3 Quantum Mechanics I
PHYS 433-3 Biological Physics Laboratory
and one of
CHEM 360-3 Thermal Dynamics and Chemical Kinetics
MBB 323-3 Introduction to Physical Biochemistry
PHYS 344-3 Thermal Physics
and four other upper division MBB or PHYS courses. MATH 462 may be included amongst these four.
The following courses are suggested.
MBB 308-3 Molecular Biology Laboratory
MBB 321-3 Intermediary Metabolism
MBB 413-2 Physical Biochemistry Laboratory
MBB 421-3 Nucleic AcIds
MBB 422-3 Biomembranes
MBB 423-3 Protein Structure and Function
MBB 441-3 Bioinformatics
MBB 442-3 Proteomics
PHYS 395-3 Computational Physics
PHYS 492-3 Special Topics in Physics
PHYS 413-3 Advanced Mechanics
PHYS 445-3 Statistical Physics
PHYS 455-3 Modern Optics
PHYS 484-3 Nonlinear Physics
MATH 462-3 Fluid Dynamics
Biological Physics Honors Program (15-17 additional upper division credits)
Honors program graduates may undertake graduate work in elther physics or molecular biology, or related areas, and should choose their courses accordingly.
Additional Upper Division Requirements
Students complete 15-17 upper division credit hours in addition to the biological physics major program (see "Biological Physics Major Program" on page 204) by choosing either Option A or Option B as stipulated below.
Option \(A\)
MBB 481-5 Individual Study Semester - Research Design
MBB 482-5 Individual Study Semester - Research Performance
MBB 483-5 Individual Study Semester - Research Reporting
Option B
PHYS 384-3 Methods of Theoretical Physics I
PHYS 415-3 Quantum Mechanics II
PHYS 432-5 Undergraduate Honors Thesis
PHYS 445-3 Statistical Physics
```

Rationale: The topics and techniques covered in PHYS 395 (Computational Physics) are relevant to the modeling of biological systems, and will provide students in this program with more options.

# SIMON FRASER UNIVERSITY <br> Program Change Form 

## Program: CHPH program <br> Changes for $10 / 11$ calendar <br> Delotions <br> Additions

## Chemical Physics Major Program

This program is offered jointly by the Departments of Chemistry and Physics. Entry requires permission of both. Students are strongly encouraged to complete al least three lower division computing science units.

```
Lower Division Requirements
(57 units)
Students complete all of
CHEM 121-4 General Chemistry and Laboratory I
CHEM 122-2 General Chemistry II
CHEM 126-2 General Chemistry Laboratory II
CHEM 215-4 Introduction to Analytical Chemistry
CHEM 230-3 Inorganic Chemistry
CHEM 236W-3 Inorganic Chemistry Laboratory
CHEM 281-4 Organic Chemistry I
MATH 152-3 Calculus II
MATH 251-3 Calculus III
MATH 252-3 Vector Calculus
PHYS 131-2 Physics Laboratory I*
PHYS 211-3 Intermediate Mechanics
PHYS 231-3 Physics Laboratory II
PHYS 255-3 Vibrations and Waves
and one of
MATH 150-4 Calculus I with Review
MATH 151-3 Calculus I
PHYS 125-3 Mechanics and Special Relativity (or PHYS 120 or 140)
PHYS 126-3 Electricity, Magnetism and Light (or PHYS 121 or 141)
and one of
MATH 232-3 Applied Linear Algebra
MATH 240-3 Algebra I: Linear Algebra
and one of
CHEM 260-4 Atoms, Molecules, Spectroscopy
PHYS 285-3 Introduction to Relativity and Quantum Mechanics
and one of
PHYS 120-3 Mechanics and Modern Physics
PHYS 125-3 Mechanics and Special Relativity }\mp@subsup{}{}{\dagger
PHYS 140-4 Studio Physics - Mechanics and Modern Physics*
and one of
PHYS 121-3 Optics, Electricity and Magnetism
PHYS 126-3 Electricity, Magnetism and Light }\mp@subsup{}{}{\prime
PHYS 141-4 Studio Physics - Optics, Electricity and Magnetism*
```

```
*students with credit for PHYS 140 and 141 are not required to complete PHYS 131
t recommended
Upper Division Requirements
(40 units)
CHEM 340-3 Materials Chemistry
CHEN-36GN-3-PhygicaLChemictryLaberatery|
CHEM 366W-3 Physical Chemistry Laboratory I'
CHEM 462-3 Molecular Spectroscopy
MATH 310-3 Introduction to Ordinary Differential Equations
PHYS 321-3 Intermediate Electricity and Magnetism
PHYS 421-3 Electromagnetic Waves
and one of
PHYS 326-4 Electronics and Instrumentation
PHYS 332W-4 Optics Laboratory*
and one of
CHEM 360-3 Thermodynamics and Chemical Kinetics
PHYS 344-3 Thermal Physics
and one of
CHEM 460-3 Advanced Physical Chemistry
PHYS 445-3 Statistical Physics
and one of
CHEM 464-3 Quantum Chemistry
PHYS 385-3 Quantum Mechanics I
```

plus-10uppor-division chemistry, muclear-scionce-or-physies-units-chesentomaintain a minimum of $\mathbf{- 1 5}$ upper division-units in both chemistry and physies.
plus upper division chemistry, nuclear science or physics units chosen to bring the total number of upper division units to 40 . and maintain a minimum of 15 upper division units in both chemistry and physics
"the requirement of PHYS 233 as a prerequisite for PHYS 332 is waived for students in the chemical physics major and honors programs.
${ }^{1}$ students in the chemical physics major and honors programs may substitute PHYS 285 for CHEM 260 as a prerequisite for CHEM 366W

## Other Requirements

Please see "Requirements for Major" on page 181.

## Chemical Physics Honors Program

This program is offered jointly by the Departments of Chemistry and Physics. Entry requires permission of both. Honors program graduales may do graduate work in either chemistry or physics and should choose their courses accordingly. Students are strongly encouraged to take al least three lower division computing science units.

## Lower Division Requirements

Requirements are the same as for the chemical physics major program.
Upper Division Requirements
(51 units)
Students complete all of CHEM 340-3 Materials Chemistry CHEN 366W-2 Phyeical-Chemistry Laberatery
CHEM $366 \mathrm{~W}-3$ Physical Chemistry Laboratory ${ }^{\prime}{ }^{\prime}$

```
CHEM 462-3 Molecular Spectroscopy
MATH 310-3 Introduction to Ordinary Differential Equations
PHYS 321-3 Intermediate Electricity and Magnetism
PHYS 384-3 Methods of Theoretical Physics I
PHYS 415-3 Quantum Mechanics II
PHYS 421-3 Electromagnetic Waves
and one of
CHEM 360-3 Thermodynamics and Chemical Kinetics
PHYS 344-3 Thermal Physics
and one of
CHEM 460-3 Advanced Physical Chemistry
PHYS 445-3 Statistical Physics
and one of
CHEM 464-3 Quantum Chemistry
PHYS 385-3 Quantum Mechanics I
and one of
CHEM 440-3 Solid State Materials Chemistry
PHYS 465-3 Solid State Physics
and one of
CHEM 481-5 Undergraduate Research
PHYS 432-5 Undergraduate Honors Thesis
and one of
PHYS 326-4 Electronics and Instrumentation
PHYS 332W-4 Optics Laboratory*
```

plus upper division chemistry, nuctear science or physics credit hours chosen to bring the total number of upper division units to 51 and maintain a minimum of 21 UD credits in both chemistry and physics.
the requirement that PHYS 233 be completed as a prerequisite for PHYS 332 is waived for students in the chemical physics major and honors programs.
istudents in the chemical physics maior and honors programs may substitute. PHYS 285 for CHEM 260 as a prenequisite for CHEM 366W

## Other Requirements

Please see "Requirements for Honors and Honors First Class" on page 181.

Rationale: CHEM 366 was recently converted from a 2 unit course to a 3 unit writing intensive course. The revisions outlined here remove an ambiguity in the total number of additional upper division units required for completion of the Chemical Physics Majors program and correct other errors. Additionally, the program presently forces students to choose CHEM 260 over PHYS 285 in order to complete the prerequisite for CHEM 366W, which is a required course. The Chemistry department is satisfied that PHYS 285 provides suitable preparation for CHEM 366 W , and has regularly granted waivers. The proposed change formalizes current practice and provides students with more options.

TO: Bill Krane, Chair, SCUS

RE: Faculty of Science
Undergraduate Curriculum Item

FROM: Rolf Mathewes, Associate Dean Faculty of Science

DATE: January 19, 2010

The Faculty of Science has approved the following, which must now be considered by SCUS.
Please place this item on the agenda of the next SCUS meeting.
Statistics \& Actuarial Science
Prerequisite change - STAT 302-3


Enclosure
c. J. Hinchliffe, M. Plischke

# SIMON FRASER UNIVERSITY <br> Senate Committee on Undergraduate Studies Course Change/Deletion Form 

Existing Course Number/Title: STAT 302-3/ Analysis of Experimental and Observational Data

Please check appropriate revision(s) being recommended:
Course Number: $\qquad$
Description: $\qquad$
Course deletion: $\qquad$

## FROM:

The standard techniques of multiple regression analysis, analysis of variance, and analysis of covariance, and their role in experimental research. Prerequisite: any STAT course, or BUEC 232, or ARCH 376. Students cannot obtain credit for STAT 302 if they already have credit for STAT 350, or if they are simultaneously registered in STAT 302 and STAT 350. Stat major and honors students may not use this course to satisfy the required number of elective hours of upper division statistics. However, they may include the course to satisfy the total number of required hours of upper division credit. Quantitative.

TO:
The standard techniques of multiple regression analysis, analysis of variance, and analysis of covariance, and their role in experimental research. Prerequisite: any STAT course except STAT100, or BUEC 232, or ARCH 376. Students cannot obtain credit for STAT 302 if they already have credit for STAT 350, or if they are simultaneously registered in STAT 302 and STAT 350. Stat major and honors students may not use this course to satisfy the required number of elective hours of upper division statistics. However, they may include the course to satisfy the total number of required hours of upper division credit. Quantitative

## RATIONALE:

STAT 100 is a Breadth course and does not cover all the technical details required for STAT 302.

| ATTENTION | Dr Bill Krane | DATE January 27, 2010 |
| :--- | :--- | ---: | :--- |
|  | Chair, SCUS |  |
| FROM | Dr. Brent Ward <br> Chair, Earth Sciences Undergraduate curriculum |  |
|  | Committee |  |
| RE: | Earth Science Second Response to Suggested Name Change of EASC 405. |  |

The Department of Geography continues to have concerns about the name for EASC 405. Initially this course was called Water, Environment and Climate Change. Because of concerns over the broadness of this title it was changed to Water Resources, Environment and Climate Change. This was still considered unacceptable by Geography and they suggested changing Water Resources to "Cycles". We are somewhat unclear as to what Geography's issue is with the term "Water Resources". Diana Allen is already teaching a graduate course called Groundwater Resource Evaluation (EASC 623), so there is already precedence for the use of "Resources" in relation to water in Earth Sciences.

Although Water Cycles is an important component of EASC 405, the course also deals with the storage of water and it's use, thus water resources are equally important. We have proposed the title "Water Cycles and Resources: Environmental and Climate Change Impacts" to combine these two important concepts. Earth Sciences still prefers Water Resources, Environment and Climate Change as the title for this course but we hope that Geography finds this newest proposal a reasonable variation of one of their suggested titles. We have also modified the course and calendar description to more clearly state what the course covers. We sincerely hope that Geography finds this title acceptable.

## EASC 405

## COURSE TITLE

LONG - for Calendar/schedule, no more than 100 characters including spaces and punctuation

## Water Cycles and Resources: Environmental and Climate Change Impacts

AND
SHORT - for enrollment/transcript, no more than 30 characters including spaces and punctuation

## Water, Environment, Climate

## CREDITS

Indicate number of crediss for: Lecture 2 Tutorial 0 Leminar 1 Lab
COURSE DESCRIPTION (FOR CALENDAR). 3-4 LINES MAXIMUM. ATTACH A COURSE OUTLINE TO THIS PROPOSAL. Applies and integrates concepts from hydrological science to assess the various impacts to water cycles over a range of scales, considering both climate and other environmental stressors. Secondary impacts of climate change on water resources (including water for humans and aquatic ecosystems) are explored, focusing on current issues to generate ideas for potential mitigative and adaptive solutions.

## PREREQUISITE

EASC 304, EASC 412, GEOG 311

## Recommended: GEOG 411

## COREQUISITE

## None

## SPECIAL INSTRUCTIONS

That is, does this course replicate the content of a previously-approved course to such an extent that students should not receive credit for both courses.? If so, this should be noted in the prerequisiite.

COURSES(S) TO BE DELETED IF THIS COURSE IS APPROVED NOTE: APPROPRIATE DOCUMENT FOR DELETION MUST BE SUBMITTED TO SCUS

## RATIONALE FOR INTRODUCTION OF THIS COURSE

The topics are current and highly relevant to water science and the course will be a popular elective course in
Earth Sciences (and also accessible to Physical Geography and Environmental Science students). In addition,
it is a required course for the proposed "Applications in Water Science" stream in Environmental Science.

## SCHEDULING AND ENROLLMENT INFORMATION

Indicate effective torm and year course would first be offered and planned frequency of offering thereafter:

## Spring 2011 - every 2 years

(NOTE:There is a two-term wait for implementation of any new course.) Indicate if there is a waiver required: $\square$ YES $\square$ NO Will this be a required or elective course in the curriculum? $\square$ Required $\square$ Elective What is the probable enrollment when offered? Estimate 20 20

Which of your present CFL faculty have the expertise to offier this course?

## D. Allen will develop the course, and will be the primary instructor Dirk Kirste, Gwenn Flowers could also teach the course

Are chere any proposed student fees associated with this course other than tuition fees? (If yes, attach mandatory supplementary fee approval form.)

## RESOURCE IMPLICATIONS

NOTE: Senate has approved (S.93-11) that no new course should be approved by Senate until funding has been committed for necessary library materials. Each new course proposal must be accompanied by a library report and, if appropriate, confirmation that funding arrangements have been addressed.
Campus where course will be cugght Burnaby

Library report status $\qquad$
Provide details on how existing instructional resources will be redistributed to accommodate this new course. For example, will another course be eliminated or will the frequency of offering of other courses be reduced; are there changes in pedagogical style or class sizes that allow for this additional course offering?

## Diana Allen's regular course load can accommodate this new course every 2nd year in the spring semester.

List any oustanding resource issues to be addressed prior to implementation: space, laboratory equipment, etc:
Course only needs a lecture room.

Articulation agrement reviewed: $\square$ YES $\square$ NO $\square$ Not applicable

## OTHER IMPLICATIONS

This course is currently listed as a required course in the proposed Environmental Science BSc Major Program "Applications in Water Science".


[^0]:    Does this course replicate the content of a previously approved course to such an extent that students should not receive credit for both courses: If so. this should be noted in the prerequisite.

[^1]:    - students with credit for PHYS 140 and 141 are not required to complete PHYS 131
    ${ }^{1}$ recommended

