SIMON FRASER UNIVERSITY
 MEMORANDUM

DEPARTMENT OF MATHEMATICS
Sol_SENATE

From \qquad
\qquad
Date DECEMBER 16, 1971

MOTION: "That Senate approve, as set forth in S.72-14
PROPOSAL I. Degree Requirements for Majors and Honors in Mathematics.

PROPOSAL II. Degree Requirements for a Minor Program in Mathematics.

PROPOSAL III. Adjustment to the Calculus Sequence - with discontinuance of Mathematics 251-3, replaced by Mathematics 253-4.

PROPOSAL IV. Discontinuance of Mathematics 411-4, replaced by Mathematics 311-4 (renumbering).

PROPOSAL V. Change in Prerequisite for Mathematics 422-4.
PROPOSAL VI. New Course Proposal - Mathematics 302-3 - with discontinuance of Mathematics 102-3."

SIMON FRASER UNIVERSITY
 MEMORANDUM

To SENATE	From SENATE COMMITTEE ON UNDERGRADUATE STUDIES
Subiect CURRICULUM AND CALENDAR CHANGES -	Date_DECEMBER 16, 1971
DEPARTMENT OF MATHEMATICS	

The Senate Committee on Undergraduate Studies approved the submission of the Department of Mathematics, as set forth in SCUS 71-27, and recommends approval to Senate.

SIMON FRASER UNIVERSITY

Scus 71-a7

AAEAORANDEUAA

SA:1a
Enclosure
cc: J. Chase, Chairman of SCUS
R. Lardner, Acting Chairman of Mathematics

AAEAORANDUR

Dr. S. Aronoff, Chairman Undergraduate Studies Committee Faculty of Science

Subject...... PROPOSALS FOR CHANGES IN MATHEMATICS
|.
From........... Rr.N. Lardner Acting Head Mathematics Department

Date......... September 21, 1971

The Mathematics Department wishes to recommend that a number of changes be made in its undergraduate calendar submission. They are:
I. Degree requirements for Majors and Honors in Mathematics
II. Degree requirements for Minors in Mathematics
III. Adjustment to the calculus sequence
IV. Renumbering of Mathematics 411-4
V. Change in prerequisite for Mathematics 422-4
VI. New course proposal - Mathematics 302-3.

The first is a proposal to change the degree requirements for students majoring or taking honors in mathematics. It is the result of a critical evaluation of the Department's present degree requirements, combined with a comparison of mathematics degree requirements at the Universities of British Columbia and Victoria. The Department wishes to adopt these new requirements in order to increase the flexibility for undergraduate students who complete all of their mathematics degree requirements here, and in order to make it easier for students to transfer: to this University from the B.C. regional colleges. Details of the other proposals appear on the attached pages.

R.W. Lardner

RWL/ses
lit is proposed that the requirements for undergraduate students majoring or taking honors in Mathematics be changed to read as follows：
requirements for students majoring or taking honors in mathematics
Students majoring or taking honors in Mathematics are subject to the general regulations of the Faculty of Science．They will normally be required by the Mathematics Department－
（i）to obtain credit by the end of the fourth level for the following lower division Mathematics courses：
151－3，152－3，232－3，253－苪（ formerly 251－3）；
and，at least three of the following courses：
106－3，141－2，142－2，161－3，180－3，195－3，241－2，261－3
（In choosing courses from this list students should note that 106－3，241－2 and 261－3 are prerequisites for certain upper division mathematics courses．In particular，honors students are advised to note that 241－2 is a prerequisite for 421－4．）
（ii）to obtain at least six semester hours of credit in Science courses other than Mathematics．：Physics courses which are required for the Applied Mathematics option，see＂Programs of Study＂below，can be used if desired for the satisfaction of this requirement．）
（iii）in the case of major students－to obtain a total of at least 44 semester hours of credit in upper division courses of which at least thirty must be in upper division Mathematics courses．
（iv）in the case of honors students－to obtain credit in the following upper division Mathematics courses：

352－2，411－4，421－4，422－4，and
one of 431－4，432－4
（NOTE：Any student with honors standing may，on application to the Departmental Undergraduate Studies Committee，be permitted to complete a program of studies in a specialized area，for which one or more of the above courses may be waived．）
Honors students will be required to obtain a total of at least 60 semester hours of credit in upper division courses of which at least 50 hours（including those specified above）must be in upper division Mathematics courses．

For the purposes of the satisfaction of conditions（iii）and（iv）above，Physics 411－4 may be counted as a Mathematics course．Mathematics students are expected to obtain a grade of C－or better in their courses a：they will not normally be permitted to enroll in any course for which ea D grade or lower was obtained in any prerequisite．

SIMON FRASER UNIVERSITY
 AEAAORANDUM

Dr. S. Aronoff

Dean of Science

Subject
CHANGES IN DEGREE REOUTREMENTS FOR MAJORS AND HONORS STUDENTS IN MATI

From..... ... Dr. R.W. Lardner
Acting Head
Mathematics Department

Date..............November 18, 1971

At the Executive Committee Meeting on Tuesday you requested a brief summary of our reasons for proposing a change in the degree requirements for undergraduate students majoring or taking honors in Mathematics. These are as follows:

It has become apparent that difficulties were being created for students who transferred from regional colleges in this province, since none of these colleges offer courses similar to our Mathematics 161 and/or 261. Douglas College, potentially our largest source of transfer students, attempted to mount a course similar to our Math 161 and were forced to cancel it since no students registered for the course. The proposed changes will now make it possible for transfer students to complete all of their lower level mathematics requirements before transferring to this University to complete a B:Sc. in Mathematics. In addition enrollments in 161 and 261 at this. University have never been very large, and there has been pressure to remove their status as required courses.

The proposed changes were also the result of a comparison of this Department's requirements with those of the Mathematics Departments of the Universities of B.C. and Victoria. The changes reflect an attempt to align this Department's requirements with those of the other mathematics departments in the other B.C. universities. A comparison of the requirements for undergraduates majoring or taking honors in Mathematics at the three B.C. Universities is as follows:

	U.B.C.	U. VIC.	$\begin{gathered} \text { S.f.U. } \\ \text { Present New } \end{gathered}$	
1. No. of required hours of 100 and 200 level Math courses - MAJORS	18	18	21	19-22
2. No. of required hours of 100 and 200 level Math courses - HONORS	20	18	- 21	19-22
3. No. of required hours of 300 and 400 level Math courses - MAJORS	24	30	30	30
4. No. of required hours of 300 and 400 level Math courses - HONORS	42	48	50	50

In addition the other Universities allow their mathematics majors much greater freedom in their choice of mathematics courses than we have done in the past. The new degree requirements we are proposing will give our students a flexibility in this respect which will match that of U.B.C. Hopefully they will put us in a more competitive position as regards attracting transfer students from the junior colleges.

SIMON FRASER UNIVERSITY
 AAEAORAKEUM

Attached please find a memo from the Department of Mathematics relating to the Proposals for Changes in Mathematics Undergraduate Calendar Submission (Paper SCUS 71-27), specifically Proposal I of that paper.

May we request that this memo be included as supplementary material in the submission which goes to Senate.

$1 \mathbf{a}$

Enclosure

The Mathematics Department wishes to implement a minor program in Mathematics. The following would be the calendar entry for such a program:

REQUIREMENTS FOR STUDENTS COMPLETING A MINOR PROGRAM IN MATHEYATICS
Students completing a minor program in Mathematics are subject to the general regulations of the Faculty in which they are registered. They will normally be required by the Mathematics Department -
(i) to obtain credit for 11 semester hours of mathematics courses numbered bot wetirat the following courses:

151-3 and $152-3$ and 232-3, and either 106-3 or 161-3 or 241-2 or 253 - ${ }^{4}$ (fun...i-ly $251-3$)
(ii) to obtain credit in at least 15 semester hours of upper division Mathematics courses. (Physics 411-4 may not be used to satisfy this requirement.) (Students will be expected to complete all of the prerequisites for those upper level mathematics courses they wish to include in their minor programs.)

Students will be expected to obtain a grade of C- or better in their courses. They will not normally be permitted to enroll in any course for which a grade of D or lower was obtained in any prerequisite.

Students may specialize in Applied Mathematics, Probability and Statistics, or Pure Mathematics. Further information is available from the Mathematics Departmental Office.

An advisory service will be available to assist students in the selection of courses most appropriate to their programs.

The Mathematics Department requests that 1 semester hour of credit be added to the course Mathematics 251-3, Calculus III, which would then become Mathematics 25x-4, Calculus III. The topic 'infinite series', which is now taught in Mathematics 152-3, Calculus II, would then be taught in Mathematics 253-4. More material on applications of differentiation and integration of functions of one variable would then be taught in Mathematics 151-3 and 152-3.

The reasons for the proposed change are:
(a) The inclusion of infinite series in Mathematics 152-3 has resulted in severe limitations on the time spent on applications of integration. The proposed change would permit more applications of calculus of one variable to be taught in Mathematics 151-3 and 152-3 and allow a fuller exposition of infinite series in Mathematics 253-4 for those students (particularly in Mathematics, Physics, and Chemistry) whose work requires this topic.
(b) It would ease transfer arrangements for students coming from junior colleges, since infinite series's are not taught in first year calculus courses in many colleges.

Finally, it should be noted that the proposed changes in the syllabuses for these calculus courses have been discussed with representatives of the Biology, Chemistry and Physics Departments, and that they were amenable to these changes.
 math 253 -it for further cred .t.

```
MmTmyarc.S 151-3
```

TEXT: Purcell - CALCULUS FITH MALTMC GROH:TRY

Estimated time 4 hours.

Chaper ? - CARTESIAN CORDDITES IN THE PLANE
Sectjon 2.1 Rectangular coordinates
2.2 Distance botwom two points
2.3 Directed distances. Midpoint formure
2.4 Slope
2.5 The graph of an equation
2.7 Sketching graphs
2.8 The strajght line
2.9 Distance between a point and a line 2.10 The circle

Estimated tine a botrs.

Chapter 3 - FUNCTICRS AND THER GRAPHS

Section 3.1	Functions
3.2	Operations on functions
3.3	Special functions

Estimated time 2 hours.

Chapter 4 - LIMTS AND CONTINOTY

Section 4.1	The limit of a function
4.2	Definition of limit
4.3	Theorems on libits
4.4	Continuity
4.5	Limits as $\mathrm{X} \rightarrow 2$. Onc-sjded limits
4.6	Aspmptotos
4.7	lnerenents

Sections 4.5, 4.6 done very briefly ou possibly onited. listimated time 3 hours.

Chapter 5 - TD DERIVATVE

$$
\begin{aligned}
\text { Section } & 5.1 \\
5.2 & \text { Tangent to a curve } \\
5.3 & \text { The derivative } \\
5.4 & \text { Rate of chanioc } \\
5.5 & \text { The derivative and continuity }
\end{aligned}
$$

Estimated time 3 hours.

Chapter 6 - FORQUAS FOR DJFERESTATIDN OF ALGERDAIC FUNCTIOSS
Section 6.1. . Derivative of polynomal function
6.2 Derivative of a product or quotient of functions
6.3 Chain rule for differentiating composite functions
6.4 Derivative of any rational poner of a fanction
6.5 Derivatives of higher order:
6.6 Implicit differentiation
6.7 Differentiaf:
6.S Differentials as approximations

Proofs not done in detail.
Estinated time 5 hours.

Chapter 7 - APPLJCATIOSS OF DERTVATVES
Section 7.1 Tangents and normals
7.2 Acceleration in strajght line aotion
7.3 Related rates
7.4. Newton's method for detemining the roots of $f(x)=0$.
7.5 Absolute maximum and minimm values of a function
7.6 Extrenia
7.7 The first derivative test for outrom
7.8 Rolle's theorem and the mean valae theorin
7.9 Second derivative test for extrow?
7.10 Applied problems in maxima and mana
7.11 Maxima and minima by innijeit difforentiat act
7.12 Concavity. Points of inflection
7.13 Curve sketching

Estimated time 12 hours.
Chapter 12 - TPANSCEDPNTAL FUECTIONS
Scetion 12.7 Trigonometric functions
12.8 Some trjonacotric limits
12.9 Derivatives of the trigonometric fune: ions
astimated tine 3 hours.

The chief change from the provious syllabus is the incroasel material and estimated time in Chapter 7 and the omissjon of most of Chater 12.

Chapter \& - AnTmervatues

Section 3.1 Tntsodution
3.2 Finding antiderivatives
8.3 Gencralized power formula for antiderjatives
8.4 Some applicaidons of anderivatives

Estindated tiree ? - 3 hours.

Chapter 9 - THE DEPNTE INTEGRN
Section 9.1 Area
9.2 Tho sigma notation
9.3. The definite incegral
9.4 Appreximate integration by the trapeadiel al
9.5 Properties of definte incemals
9.6 The mean vane theoran for finterrals
9.7 Integrals wish variable uper limits
9.8 The fundanenal theoren of jnternal caloulas
9.9) Finding the exact value of a dofinite jnees.

Estimated time 5 hours.

Section 10.1 plane areas
10.2 Volme of a solid revolution
10.6 Centroid of a plane reston
10.8 Homent of inertja of a plane resion
10.10 Arc longth and differential os arc in rectangular coordinates

Estimated time 5 hous:
Chapter Jl - CONICS

$$
\begin{aligned}
\text { Section } 11.3 & \text { The raxabola }(c=1) \\
11.7 & \text { The ellipse }(e<1) \\
11.9 & \text { The hyperbola }(c>1)
\end{aligned}
$$

Only the standard forms of parabola, cllipse and hyonola.
Since these sections are closily connected to others it may not be advisable to follow the linok.

Estimated tine 3-4 hours.

Section 12.1 The natural logarjthaic function
12.2 Grajh of the natual logarithme fanction
12.3 Logarithmic differentiation
12.4 Inverse of a function
12.5 The expunential function
12.6 Exponential and logarithmic functions with bases other than e
12.10 Inverse trigonomotric functions
12.11 Graphing by addition of ordinates
12.12 Hyperbolic functions
12.15 Inverse hyeriolic functions

Equation 12.6 .5 may be onitted.
Estimated tine 7 hours.
Chapter 13 - TECHIGH of InTEGPTION

> Section 13.1 Introduction
> 13.2 The basic integration fomalas
> 13.3 Integration by substitution
> 13.4 The first four basic fommas of integration
> 13.5 The basic trigonometric fommas
> 13.6 The basic imverse trigonometric foms
> 13.7 Integration by parts n
> 13.8 Integrals involving rax $\frac{1}{}$ b
> 13.9 Definite inesgrals. Chanc of limis
> 13.10 Some trigonometric integrads
> 13.1] Integrals involving $a^{2}-u^{2}, \sqrt{a^{2}+u^{2}}$, or $\sqrt{u^{2}}-a^{2}$
> 33.12 Integrals of $\int \frac{(A x+B) d x}{\left(a x^{2}+b x+c\right)^{n}}$
> 13.13 Jntegration of rational functions by partial fractions
> 13.14 Integration by partial frections (contimued)
> 13.15 Rational functions of sin x and cos x
> 13.16 Tables of integrals
> 13.17 Simpson's rule

Section 13.13 donc briesly.
Estimated tine 10 hours.
Chaptor 14 - POLAR COORDLEATES
Section 14.] Polar coordinatos of a point
11.2 Graph of a polar equation
14.3 Relaijons betwen Cartesian and fo:ar coordimates .
14.a The stanishe line and eireic inforar coondinates

Estimuted time 3 homes.

Section 15.1 Jaromotric equations of a curve
15.2 The \%cloid
15.3 Functions defined by parametric cquations
15.2 donc briosly.

Estimated time 2 hours.

The chief changes from the prevjous syllabus are the increased material and time in Chapter 10 , the inclusion of Chopter 12 and the onission of Chopter 16 and 21.

Section 16.1 Jnfinite linits of intcoration
16.2 Infinite interrands
16.3 Extended mom vidue thoorem
16.4 Indeterninate forms
16.5 LHonital's rules
16.6 Other indeteminate forms

Estimated time 4 hours.
Chapter 17 - ABALYEC GEONERY OF THBEE-DIMESTGAS SPACE
Section 17.1 Cartesian coordinates in threc-space
17.2 Distance fomulas
37.3. Direction aneles and direction cosiacs
17.4 Direction numers
17.5 The two fundmental problews in space
17.6 Equation of a plane pamallol to a coordinate platie
$1 \% .7$ Nomal equation of a plame
17.8 Graph of a first-dseree emation

1\%.9 Parallel and perpendicular panos
$1 \% .10$ Condizions that detemine e plane
17.11 General eotutions of a line in space
17.13 Symetric couations of a line
$1 \% .14$ bamocric equations of a lime in space
17.15 the shere
17.16 Smaces and curves
$1 \% .17$ Cyinders
17.18 Surfaces of revolution
17.19 S:mactry, traces and plane sections of a surface
17.20 Quadric surfaces
17.21 Procedure for sketching surface

1716 should perhaps be angented with other moterials.
bitimated time 12 hours.
Chanter 18 - VECTOR IA THBE-DTBENSIOBH, CPACE
Section $1 \mathrm{s.1}$ Yectors in space
18.? Cross moduct
18.3 Vocto cunations of planos and lines
18.4 Voctor fancians in the dimonemes
13.5 Yelocity and sccelention
18.0 Are lensth. Combare
 dot prohle, and besis vectors 15.7 Vector functions, 15.8 Cuvilimer motion, lestor ase lenth.) show be done ato.

Satimic. time " luars.

Soction 19.1 Funcions of two or nore variables
19.2 Partial derivatives
19.3 limits and continsity
19.4 Increntats and difecontials of functions of tho variables
19.5 Chain mide
19.6 Dircetions derivative
19.7 Gradiont. Tangent plane to a surface.
19.8 Extrem of a function of tho variabies
19.9 Liac integrals.

Estimated time 8 hours.

Chepter 20 - Muturle TMPERLS

Section 20.1 Double integrals
20.2 Itorated integrals
20.3. Evaluation of double incerrals by means of iterated inecgrals
20.4 Other applications of double integrals
20.5 Polar coordinaces
20.6 Triple intograls
20.7 Aplications in rectangular coordinates
20.8 GYindricel and spherical condiates

Only the "area" and "volue" sections of 20.4, 20.7 respctively need be done.

Estimated tine 8 hours.

Chapter 21 - INFIMTE SERTES
Section 21.1 Sequences
21.2 Infinite series
21.3 Tests for comergence of sories of positive torns
21.4 Alternating series. Ahsolute convergence
21.5 Power serios
21.6 Functions actined by poner sexics
21.7 Taylor's fomula
21.8 Other forms of the remander in Taylor's theorem
21.9 Complex variable

Estimated time 10 hours.
Chapters 16, 21 were perionsly taust in hath 152-3. To enable

Mathematics Department
September 21, 1971
PROPOSAL IV
The Mathematics Department wishes to recommend that Mathematics 411-4, Methods I, be renumbered and noted in the undergraduate calendar as Mathematics 311-4. The reason for this request is that a change in number as is proposed would encourage students to take this course early in their upper level course work. This is particularly necessary for applied mathematics students since Mathematics 411-4 is a prerequisite for many of the upper division applied mathematics courses. In addition, we wish to make Mathematics 311-4 an alternate prerequisite for Mathematics 422-4 to allow more flexibility for mathematics students and for majors and honors students in Physics. There will be no change in the syllabus for this course.
students who have taken math yir-4 may not tole math $311-4$ for for then credit.

1. Quick review of functions of several variables. ($\dot{1}_{2}-1$ week)
2. Vector field theory: Differential operator ∇, Gradient, divergence and curl of vector valued functions, the directional derivative, applications to analytic geometry. ($1 \frac{1}{2}$ weeks)
3. Extrema of functions of several variables, extrema under constraints. (1 week)
4. Multiple integrals: Iterated integrals, double and triple integrals, Jacobians change of variable in multiple integrals cylindrical and spherical coordinates.
(2 weeks)
5. Line and surface integrals: Simply or multiply connected regions, independence of the path. Green's Theorcm, the divergence theorem, stoke's theorem. (2 wceks)
6. Infinite series: Review of tests for absolute and conditional convergence of the series of constants, operation with series (Addition, multiplication, rearrangement, etc.), sequence and series of functions, absolute and uniform convergence, tests for convergence.
(1-1! $\frac{1}{2}$ weeks)
7. Power series: Radius and interval of convergence, the Taylor and Maclaurin series, forms of the remainder. (l week)
8. inproper Integrals: Integrals of discontinuous functions, infinite integrals, absolute conditional and uniform convergence, mests for convergence.
(2 weeks)
9. Curvilinear coordinates: Coordinate curves and coordinate surfaces, the base vectors, orthogonal curvilinear coordinates.
$(2$ weeks).

TRXTE: l. Advanced Calculus by Watson Fulks

$$
\therefore \text { Arvenced Calculus by J.M.H. Olmsted }
$$

3. Aivariced Colculus by D.V. Widder

The Mathematics Department wishes to request that the prerequisite for Mathematics 422-4, Complex Variable I, be changed to read as follows:

FROM: Mathematics 251-3 and 241-2 (or Mathematics 214-3 and 221-2).
253.4 (furmerly $251-3$)

TO : Mathematics 311-4, or Mathematics 25-475 and 241-2; (or Mathematics 214-3 and 221-2).

The reasons for this request are that more flexibility would exist for Mathematics and Physics students who either wish to, or are required to take Mathematics 422-4 as a part of their degree requirements.

CALENDAR INFORMATION
Department: Mathematics

Course Number: 302-3

Title: Statistical Methods

Sub-title or Description:

Non-parametric statistics, analysis of variance and related topics which are intended to help the students understand the uses of statistics in experimental research.

Credit Hours: 3
 Vector Description: 3-0-1

rre-requisite(s): Mathematics 101-3 or Mathematics 371-3
(Mathematics major and honor students may not use this course to satisfy the required number of semester hours of upper division mathematics courses. However, they may include the course to satisfy the total number of required hours of upper division credit.) (wher students whe have taker. Muthemutici ihis course for further cone dit
ENROLMENT AND SCHEDULING
Estimated Enrollment: 20 per offering
Semester Offered (e.g. Yearly, every Spring; twice yearly, Fall and Spring):

Yearly, every Spring

When course will first be offered: Spring 1973

JUSTIFICATION

A. What is the detailed description of the course including differentiation from lower level courses, from similar courses in the same department and from courses in other departments in the University?

It is a course in statistical methods with emphasis
in the design and analysis of experiments, which is primarily designed to satisfy the needs of students in other departments of SFU.
B. What is the range of topics that may be dealt with in the course?

Analysis of variance, regression, correlation and non-parametric methods.
C. How does this course fit the goals of the department?

It is primarily a service course which will be offered to students of other departments.
D. How does this course affect degree requirements?

This course is not required for any Mathematics degree program.
E. What are the calendar changes necessary to reflect the addition of this course?

New entry and deletion of mathematics 102-3.
F. What course, if any, is being dropped from the calendar if this course is approved?

Mathematics 102-3.
G. What is the nature of student demand for this course?

It will fill out the demand for a course in statistical methods by upper level students, in areas other than mathematics. These students would not get full value from such a course if it were taken too early in their degree programs. One of the groups to which this case would be particularly beneficial is the Bioscience
H. Sthderts reasons for introducing the course.

See the attached sheet.

IV BUDGETARY AND SPACE FACTORS
A. Which faculty will be available to teach this course?

Dr. R. Rennie, Dr. C. Villegas, Dr. D.i Mallory
B. What are the special space and/or equipment requirements for this course?

The existing statistical laboratory facilities will suffice.
C. Any other budgetary implications of mounting this course:

None.

Mathematics 302 is intended to be a statistical methods course which will cover the same topics as Mathematics 102 , but in more depth.

Through teaching Mathematics 102 and advising advanced students on their statistical problems we have come to the conclusion that an upper levels service course is more desirable than a first year course. There are two basic reasons: students are usually not motivated towards the use of statistical methods until they reach upper levels and many of their problems need a deeper understanding than that which has been obtained in Mathematics 102.

Instead of performing a brief review of Mathematics 101 as we did in Mathematics 102, we shall, in reviewing Mathematics 101, place emphasis on a rigorous understanding of sample space, random variables, protability, expectation and distributions. In addition to providing a better base for discussion of all statistical problems this technique will allow us to deal with the more sophisticated and general approach to analysis of variance using linear models and expected mean squares.

Hence, the adoption of this course should attract more students to using correct statistical proceedure and give these students a deeper understanding than is now available.

STATISTICAL METHODS

1. Review of Math 101 with emphasis on a rigorous understanding of probability, random variables, expectation and distribution as applied to statistical understanding.
2. Analysis of variance - Linear models approach with E.M.S. calculations.

One way, Two way, Factorial and Latin Square Designs,
Fixed, Random, Mixed Models.
Multiple Comparisons
3. Bivariate Linear Regression and correlation
4. Analysis of Covariance
5. Non-parametric Statistics

Sign, Run, Rank-sum tests, Rank correlation, Tests of Randomness

SUGGESTED TEXTBOOKS:
Dixon and Massey: Introduction to Statistical Analysis
Fryer: Concepts and Methods of Experimental Statistics

