SIMON FRASER UNIVERSITY

MEMORANDUM

SENATE

To_

From ______SENATE COMMITTEE ON UNDERGRADUATE ______STUDIES

S.74.87

Subject ______ NEW COURSE PROPOSAL - CHEMISTRY 233-2 - INORGANIC CHEMISTRY OF BIOLOGICAL PROCESSES Date____JUNE 18, 1974

MOTION: "That Senate approve, as set forth in S.74-87,

the new course proposal for CHEM 233-2 -

Inorganic Chemistry of Biological Processes."

SIMON FRASER UNIVERSITY

To	SENATE
IV	

From SENATE COMMITTEE ON UNDERGRADUATE STUDIES

.....

NEW COURSE PROPOSAL Subject Chemistry 233-2

Date June 18, 1974

At its meeting of 4th June, 1974, the Senate Committee on Undergraduate Studies considered the attached new course proposal for Chemistry 233-2 and recommends its approval by Senate.

The documentation provided includes the memorandum of transmittal to SCUS from the Faculty of Science, the course proposal form and the course description. It should be noted that, while this course will become part of the core program in Bio-Chemistry (see section 3 of course proposal form and P.1 of Bio-Chemistry proposal), it has been submitted separately from that proposal since it is a purely departmental course which has followed a different route to Senate from the revisions in that program.

Mugridge

:ams

att.

SIMON FRASER UNIVERSITY

scus 74-20

.. . .

MEMORANDUM

loSenate Committee on	From S. Aronoff S. An-
Undergraduate Studies	Dean of Science
Subject NEW COURSE PROPOSAL	DateApril 18, 1974
CHEMISTRY 233-2	

The Faculty of Science at its meeting of April 9, 1974 approved the attached new course proposal for Chemistry 233-2, Inorganic Chemistry of Biological Processes and recommends its approval by SCUS.

1w

cc: T. Bell, Chairman Department of Chemistry

SENATE COMMITTEE ON UNDERGRADUATE STUDIES

NEW COURSE PROPOSAL FORM

1. Calendar Information

Department: Chemistry

Abbreviation Code: Cher	1 Course Number:	233 Credit	Hours: 2	Vector: $2-1-0$
-------------------------	------------------	------------	----------	-----------------

Title of Course: Inorganic Chemistry of Biological Processes

Calendar Description of Course:

An introduction to the principles governing the formation, properties, and investigation of metal-ligand complexes with special reference to the role of metals in biological processes.

Nature of Course Lecture

Prerequisites (or special instructions):

Chemistry 105-3. It is recommended that Chem 251 precede or be taken concurrently.

What course (courses), if any, is being dropped from the calendar if this course is approved: None. The frequency of offering of Chem 232 will be reduced if demand necessitates.

2. Scheduling

How frequently will the course be offered? Once per year initially

Semester in which the course will first be offered? Fall 1975

Which of your present faculty would be available to make the proposed offering possible? Profs. Sutton, Einstein, Peterson

3. Objectives of the Course

This is a core course in the biochemistry majors program, designed to provide instruction in a sub-area of inorganic chemistry of importance and applicability to biochemistry.

4. Budgetary and Space Requirements (for information only)

What additional resources will be required in the following areas:

Faculty	Nil	(Rearrangement of the Chemistry program offerings
Staff	Nil	will permit CHEM 233 to be offered once per year with existing faculty.)
Library	Nil	
Audio Visual	Nil	

Space Lecture Room

Equipment Nil

5. Approval

Date: RA Marin 1974	18/Ap/74	
The Bell	S. A. mott	
Department Chairman	Dean	Chairman, SCUS

SCUS 73-34b:- (When completing this form, for instructions see Memorandum SCUS 73-34a. Attach course outline).

Chemistry 233-2 Inorganic Chemistry of Biological Processes

Course Description

Lecture

- 1-4 Background: main biological functions of metal ions; oxidation states and electronic configurations of metal ions; size relationships, solvation energies, entropies and structure; complex formation, stability constants, types of ligand, chelates.
- 5-10 Group I and II ions Na, K, Mg and Ca: general properties; distribution inside and outside cells; concentration gradients, membrane selectivity and electrical potentials. Selectivity of macrocyclic ligands (including antibiotics and phosphoprotein) toward metal ions. The sodium and calcium pumps. Trigger and control mechanisms utilising Ca²⁺, muscle contraction and nerve-impulse transmission.
- 11-14 First-Row Transition-Metals M²⁺ and M³⁺ ions and their general properties. Ligand field theory; high-spin/lowspin complexes, visible spectra, octahedral and tetrahedral complexes. Distortions from regular geometry, unusual coordination numbers. Ligand-field stabilisation effects.
- 15-24 <u>Metal- Activated Enzymes</u> Metalloenzymes and metal-protein complexes, general description and distinction. Metalbinding sites, metal ion probes. Models for binding sites. Hydrolytic metal-activated enzymes (carboxypeptidase-A as detailed example). Oxidation-Reduction metalloproteins, electron-transport, heme and non-heme iron proteins, copper proteins, cobalt B₁₂ coenzymes. Nitrogen fixation and the nitrogen cycle. Oxygen carrier and storage metalloproteins, model for hemoglobin, synthetic oxygen carriers.

Student Text-Book

None currently available specific to the course as a whole. Lectures 1-4 and 11-14, together with parts of 15-24 are covered by Huheey, "Inorganic Chemistry".

Teachers Text-Book

M.N. Hughes, "The Inorganic Chemistry of Biological Processes".