SIMON FRASER UNIVERSITY

I．GEAETAT STATM MENTS

 IOES 8250° ® ©
 roform．In a nignsy rigorous approecho howovor，thoro noo
 population．Muthomerice prayranmon ara now botng proparo＠wisch

 ఇno to rooch out for novol oppronchar or anlutiow．

5だ

 とmar，olthough mathomatice is more than facto compuration and

A 以®th metsca progromme must tazch chilorran to golve

 Grougin back inco thc phyaical worlo where the oolution ere givan moaniay．
whorcyor poobible on new ropicy concopts or procenoro are intrabuced the nituont shouso ice presentob with real problems \｛5cm ond in the concrore world．

Fundenomisl to the prograwne is the dealing with chase groblemo thucugir the following sequence of octivirios：

（D）Dianlarive activiries with non－repreacnearional 3－0 matcrials：
c）®imesativa octivities with picrorial repreeqnearional matariale：
d）©imularive acriviries with pictoriol non－repreacntarional

（））grapinical representarion or model builoing octiviries：

E）consrruction of a marhemarrcal model：
9）ロpplicerion of approprante algoritnm or marncmardcal procosecs：
 GuEvRe NBG。

AO purgiso progrcer thr ough the progr wen and no toprica．

IT Moy not be nccessary or possible in ovory cooc to bogim

之のncce move devel oped tha uncorsying concopto than initial อctivithor may bo at the acmi－concrote or abotract lovol．

On occasion inuight into the grswcture of the marnamarice
 or sixig olrogather ocme grepe in the prorove．

The following is a simple illustration of a sequence of activities.

Two people are in a room.
One person comes into the room. How many people are now in the room?

Act out using real people.

Illustrate using pictures of people.

Illustrate using pictures of blocks.

Construct a graphical model.

$$
2+1=n
$$

Write the number sentence.

$$
\begin{array}{r}
2 \\
+1 \\
\hline 3
\end{array}
$$

Solve by addition.

$$
\begin{aligned}
& a+b=\square \\
& a+b=n
\end{aligned}
$$

Write a generalized statement.

A problem is perceived.

Real objects are manipulated to arrive at solutions.

Nonreprentational concrete objects are manipulated to arrive at solutions.

Pictures of real objects are used in arriving at solutions.

Drawings of nonrepresentational objects are used in arriving at solutions.

A graphical model is constructed.
A mathematical model is constructed to represent the structure of the relationship.

Algorithms and mathematical processes are applied.

A generalized mathematical model is developed for future use.

1. Prescribed Courses: As of September, 1976, courses outilned in this document from years 1 - 8 inclusive are prescribed courses.
2. Permiasive Courses:

Junior Secondary School Mathematics
To enable a smooth transition to the new courses at the Senior Secondary School level, the Department would encourage schools which have not yet implamented the revised Mathematics 9 and 10 couraes to do $s o$ in the 1976-77 school year.

Senior Secondary School Mathematics
At the present time (April, 1976) the proposed new courses at the Senior Secondary School level have been finalised, except for selection of a supporting text for Computing Science 11.

For' the 1976-77 school year, schools will have the option of introducing the new courses Algebra 11, (and Algebra 12 in the second semester), Consumer Mathematics 11, and Trades Mathematics 11 or continuing to offer the prescribed courses Mathematics 11, Mathematics 12, and General Mathematics 11.

The additional mathematics courses outlined for the 11 , 12 level are planned for implementation when textbook references are available in the near future. These include Computing Science 11, Probability and Statistics 12 (Finite Mathematics), and Geometry 12.

* See Instructional Services Circular (23.2.76-843) for additional information regarding implementation of the Senior Secondary Mathematics programme.

3. Course Outlines, Years 9-10, 11-12: In each of the levels indicated preliminary drafts of the Course outlin. were included in the curriculum Guide for one year prior to preparing the final draft. Many comments and construr tive criticisms were received from individual teachers and/or groups of teachers from throughout the Province. These comments and criticisms were given careful consideration in the preparation of the fianl drafts.
4. Prescribed Materials: Materials prescribed to support mathematic courses are listed in the prescribed Textbook List, published annually by the curriculum Development Branch and available from the Publication Services Branch.

The revised programme recognizes that there is a body of mathematical knowledge and skills that must be provided for all pupils. In addition, provision must be made for pupils with specific requirements. As a consequence, a two part mathematics programme has been planned. The first part, essentially the same for all pupils, includes the elementary programm and extends into the secondary. The second part consists of elective. courses selected by the pupil because of
(a) post-secondary ǵoals
(b) secondary school programme requirements
and (c) pupil interest and ability
Provision has also been made through a multiple-text authorization for alternative sub-programmes for groups of pupils. These aiternatives allow for differences in approach, depth and rate of learning. The extent to which the inherent benefits are achieved, however, depends in large measure on the resourcefulness of the teacher and the organization of the school.

It cannot be too strongly emphasized that no single text should be regarded as the sole instrument for meeting the objectives of the programe as outlined in this curriculum guide.

If the programme is to be relevant to present needs of pupils while also providing the foundations for future learning. then mathematics should be integrated with the other subjects. A meaningful integration will go far towards achieving a deep and continuing interest in mathematics and an appreciation for its power and usefulness. The nature and the means of integration will be determined at the school level by the specific programmes being offered to the pupils.

III. STATEMENT OF METRICATION

The Federal Government has committed Canada to the change to the Metric System. This change will take place over a ten year period and is to be completed by 1981. Commencing in September, 1973, all primary pupils began to use the metric system as a standard of measurement. It has been agreed by the Council of Ministers, Canada, that all instruction in elementary and secondary schools be predominently metric by 1978. Mathematics for years $\mathrm{K}-12$ will be completely metric by that date.

It is the intent of the Metric Commission to establish the practice of using spaces rather than commas in the writing of larger numbers (e.g. 746321988 rather than 746, 321, 988). However, you will find both forms used in present editions of the prescribed texts. Spaces are not used in computation.

A. General

Stated on the pages following are the cognitive objectives generally thought desirable at this time. The specific objectives listed for each year are meant to be more than merely illustrative but are not exhaustive. Teachers are encouraged to formulate specific objectives for their own situation consistent with those in this guide.

No mention is made here of objectives in the affective domain, not because they are less important, but because there is no consensus among educators of what they should be or how they might be achieved. Again, teachers are encouraged to develop their own specific objectives in this area.

In identifying the major objectives of a mathematics programme, one must consider that the broad goals of mathematics are derived from the needs of individuals and of society. The practical usefulness of mathematics in our scientific and technological society is increasingly apparent.

With few exceptions, the content of the revised courses in years 1-10 does not differ significantly from the content of previous courses. The emphasis in years $1-10$ remains on the operations with natural, whole and rational numbers and the study of their properties. One major exception is an expanded study of geometry. The treatment is largely intuitive though somewhat more formal at the secondary level. Two other exceptions are an introduction to the concept of function and the employment of flow charting.

The courses are organized around 9 "themes" or strands:
I sets and set operation
II number and number operations
III geometry
IV measurement
v problem solving
vi graphs and functions
VII applications of mathematics
VIII logical thinking
IX probability and statistics
The development of a course, however, does not follow a single strand exclusively but must draw on several strands at once.

