Subject... Graduate Programs in Computing Science

From Senate Committee on
Academic Planning
Date December 20, 1978

At its meeting December 13, 1978, the Senate Committee on Academic Planning approved the following motion:
"That the Masters and Doctoratal Programs be recommended to Senate for approval."

RATIONALE

The original proposal for graduate programs in Computing uience was developed during the $1976 / 77$ academic year and submitted to the Senate Graduate Studies Committee in late summer, 1977. The Assessment Committee conducted an external review of that proposal during the spring of 1978.

Taking into consideration the concerns of the external examiners and following approval of the proposal by the Senate Graduate Studies Committee, the proposal was updated to reflect changes that had taken place in the Department in the fifteen months that had elapsed since the original document had been prepared. Dr. Clayman's memorandum (attached) indicates that both the Assessment Committee and the Senate Graduate Studies Committee are satisfied that the revisions to the original proposal made by the Department of Computing Science provide a more than adequate response to the concerns expressed by the external examiners.

There are a number of compelling reasons why Simon Fraser University should undertake to develop a distinct and new graduate program in Computing Science. In particular five aspects of computing at Simon Fraser appear relevant. First, the interdisciplinary nature of the undergraduate program is unique among computing science programs in North America. The application oriented bias reflected in the undergraduate program has a major place in the graduate proposal. This synthesis of two or more traditional approaches to problems melds well with our present faculty interests and abilities. The opportunity to continue at the graduate level the same successful approach toward other disciplines affected by computing is a major distinction of the proposed program.

Secondly, although there is considerable expertise in the Computing Science Department here at Simon Fraser to enhance the application oriented bias suggested above, there also exists considerable strength in traditional areas of computing, strengths without which the Department would not be able to consider its graduate offering. New faculty added to the program in the last several years were specifically selected for their strength in areas central to Computing Science. Two areas are particularly well represented by the present faculty and, together with an application oriented bias, form the core of the proposed graduate program. These areas are "Computer Design and Organization" and "Artificial Intelligence." In the area of Computer Design, fundamental theoretical computer design is represented by Harrop (switching theory, automata), systems design is represented by Edwards and Hobson. (design of particular machines), and both areas are spanned by Dasgupta (hardware/software architecture microprogramming and language design). In the area of Artificial Intelligence, regarded by many as the primary application area within the central theme of computing, the program is represented by Cercone (natural language, understanding, heuristic programming), Havens (computer perception, heuristic programming), and Calvert (pattern recognition). With regard to the comparable program at the University of British Columbia, the advanced applications area and the computer design and organization area compliment their program by contrast while considerable rapport exists between the departments through personnel working in the area of Artificial Intelligence.

Third, Simon Fraser University offers a number of interdisciplinary programs in applied areas which will also contribute substantially to the graduate programs in Computing Science. Specifically, the University has one of the foremost cartography research efforts in the world (Peucker). The University also functions as a major centre in which large aggregates of data about health and the environment are analyzed and reviewed (Sterling and Weinkam). Simon Fraser is also well known for its contributions to radiation treatment planning and optimization of cancer therapy methods (Harrop, Sterling, and Weinkam). It offers an active program in the development of personal computers (Edwards and Hobson). There exists a strong tie to the humanities through dance choreography (Barrenholtz and Calvert). Advanced work using computers is done as well by members of the Simon Fraser University faculty, e.g. the distinguished work in computer produced music by Truax. The programs proposed for Simon Fraser University would also be complimentary to that of U.B.C. not only because of the opportunities for interdisciplinary outreach at S.F.U. but also because such areas as computer and systems design, in which we have strength, are only minimally represented at our sister institution.

Fourth, the form of the proposed program allows for a great degree of tutelege between supervisory committees and students. The emphasis is clearly on research with minimal (University minimum) course requirements (12 credit hours for the Masters). Since the supervisory committees are likely to be interdisciplinary as well, this tutelege appears warranted.

Fifth, despite the relative youth of the faculty in Computing Science and the short period of time during which a program in this field has existed at Simon Fraser University, the work of the faculty has become recognized in a number of ways (mainly through strong contract and grant support from government and industry agencies and through individual contracts). Present support includes not only the NSERC and Canada Council in Canada but also U.S. sources such as the U.S. National Institute of Occupational Health, The Council for Tobacco Research, the Office of Naval Research, and others. Presently, most members of the Department receive external grants and contracts while others have grants from the PGRC to do preliminary work which it is expected will result in additional support. The support the faculty received ror its research not only substantiates the value of their work but has many implications for the Graduate Program including offering support for graduate students, underlining the need for graduate assistants so as to support research being done, and providing ample opportunities for employment for our graduate students once they have finished their course of studies at this University.

Discussions of the proposed program at the meetings of the Senate Committee on Academic Planning concentrated on three issues. The first related to the question of whether to introduce both the Masters and Ph.D. Programs at the same time or to delay the implementation of the Ph.D. Program contingent upon review of the success of the M.Sc. Program. Delayed implementation of the Ph.D. Program would make sense if it were true that the Masters Program could be mounted with fewer resources or a lesser commitment to faculty time than would be required for both the programs. However, this would not be the case. In particular:
(1) Both programs rely on the same set of graduate courses so there would be no difference in the faculty workload associated with teaching graduate courses.
(2) If the Ph.D. Program were delayed, the graduate student body would consist mostly of Masters students and a few doctoral students under special arrangements. If both programs were implemented concurrently, the graduate student body would be more evenly divided between Masters and Ph.D. students, but the total number of students would be about the same. Thus there would be little or no difference in the workload associated with graduate student supervision.
(3) The lack of a Ph.D. Program would adversely affect recruitment of new faculty and graduate students.
(4) The Department presently employs about eighteen teaching assistants, most of whom are undergraduates. Faculty members currently have research grant and contract funds sufficient to support about four to six research associates. By next year, faculty grant and contract support should reach a level where eight or nine research associates could be supported. Office and research space for this number of teaching assistants and research associates currently exists. Thus the Department presently support and house over twenty graduate students with no significant impact on physical resources, and this number can be expected to increase to thirty within one to two years as faculty grant and contract support increase. It is not intended that the graduate program increase beyond this number. Rather, it is the intention of the Department to concentrate on a modest number of high caliber graduate students.

A second question raised at the Senate Committee on Academic Planning concerned the ability of the faculty in the Department to mount a graduate program and supervise graduate students. The research and supervisory activities of those faculty members who were present prior to September, 1978 are summarized below:
$\begin{aligned} 3 \text { Senior Faculty: } & \text { Over } 200 \text { publications } \\ & 20 \text { Ph.D.'s supervised } \\ & \text { Approximately } 25 \mathrm{M} . \text { Sc.'s supervised }\end{aligned}$
2 Associate Faculty: Over 50 publications
4 Ph.D.'s supervised
Approximately 10 M.Sc.'s supervised
6 Junior Faculty: Over 60 publications
3 Ph.D.'s supervised
6 M.Sc.'s supervised
In addition, the Department has added two new faculty members in "Information Retrieval" and "Programming Languages" effective September, 1978 and is currently searching for three additional positions in "Theoretical Computing Science and Analysis of Algorithms," Interactive Graphics," and "Software Engineering" to be filled by September, 1979. One of these authorized positions serves as a replacement for a current lecturer positions.

Regarding the hiring of qualified faculty for such a program, it is true that there is intense competition. Despite this, the Department has successfully hired highly qualified faculty for all of the positions that have been authorized during the past four years. The Department now has hardware and graphics facilities that are among the finest in Canada, and expects to continue to attract excellent faculty. Clearly, a graduate program is a key issue in the minds of prospective faculty members.

SIMON FRASER UNIVERSITY
MEMORANDUM

SCAB

Subject \qquad Computing Science

From
B.P. Clayman, Chairman

Assessment Committee
Date...... 19781220

The Assessment Committee has approved the proposed M.Sc. and Ph.D. programs in Computing Science. Its decision was based on careful evaluation of the submitted documentation, extensive discussions with the proposers, and external reviews of the proposal. Some modifications were made to the original proposal by the proposers in response to the criticisms raised by the external reviewers. These changes were considered by the committee to answer all the valid criticisms of the reviewers.

The Assessment Committee was fully satisfied as to the academic merit of and need for the revised program which it approved.

TABLE OF CONTENTS

(a) Justification for the program 3
(b) New positions and justifications 5
(c) Personnel 6
(d) Field of study 7
(e) Relationship between personnel and core areas 10
(f) New degree 11
(g) Academic requirements 11
(h) New courses 11
(i) Laboratory facilities 12
(j) Jources of support for graduate students 13
(k) Library resources and future needs 13
(I) Estimated enrolment 13
(m) Space requirements 13
(n) Graduate calendar entry 14

Attachment \#l - Graduate course proposal forms Attachment \#2 - Library report Attachment \#3 - Tentative budget proposal

1 In accordance with the Senate document for "The Establishment of New Graduate Programs" as amended and approved by Senate July 10, 1972, this document contains a proposal from the Computing Science Department for a new graduate program.
(a) JUSTIfICATICN PCR THE FROGRAM.

Ghile computing science in many leading universities was established starting first with the graduate program, Simen fraser University ofted for the cpposite approach. first a strong interdisciplinary computing science program was established at the undergraduate level that satisfied the needs of the university. The graduate program was to develop as a continuation and a logical extension of a strong undergraduate department. These aims are embodied in Senate document 573-63. This undergraduate program has now been estahlished. The program harmonicusly integrates different streams giving the student a wide choice ranging from theory and concepts of computing science, to practical preparation as a computing professional. The success of the undergraduate program is partly reflected by its rapid growth. Fall semester enrolment was 1200 students, a 41% increase from Fall, 1977, and there is no sign that that rate of growth will depreciate.

Nevertheless, despite its undergraduate orientation, the design of the computing progran and the composition of the new faculty has always reflected the original intention, to develop a full range of Graduate and Undergraduate offerings at the university, Computing Science at Simon Fraser University remains incomplete until the graduate component has been added to it. Reasons for this further formal develcpment within the Computing Science Department are many and varied. They include the following:
(1) Community need.

At both the undergraduate and the graduate level, computing Science at Simon fraser is attracting students. The undergraduate enrolment has steadily increased in less than five years from zero to more than 1200 students (Fall, 1978 figures) enrolled in computing Science courses. In addition, a small but active graduate studies commitee uithin the Computing Science Defartment consistently receives inquiries concerning graduate studies at our institution, even though we do not currently offer a graduate degree. So persistent are some students that we currently have two students working toward graduate degrees under Special arrangements, one at the MSc level and one at the phD level. In addition three other students are enrolled as special Arrangements qualifying students in Computing science. For further details see (m) below.

That computing personnel with advanced degrees are needed in the community is an understatement. It is not unusual tc see approximately 20-40 fositions for Ph.D. graduates listed in one issue of the communications of the ACM, primarily for $\in i t h e r$ academic or research positions. In addition, publications such as the University Affairs, the caut Bulletin, IEEE Spectrum and Computer journals regularly advertise additional posts calling for people with advanced computing degrees. In the past three years SFU has added five full time ccmputing science faculty and two joint appointments with computing science; UBC has added three new faculty in the past year alone. The past Director of the computing science Department bere at S fu has stated that he regularly receives inquiries from frospective employers for 2 to 3 graduate level educated computing scientists a month from all over North America (approximately 30 inquiries fer year). In addition many industrial and government agencies are searching for and employing computing science graduates with advanced degrees. Advertisements in neuspapers and trade journals (such as Datamation or Canadian Datasystems) easily verify this cbservation. At the most recent employment register held in february, 1978 in detroit there uere 3, \cline { 3 - 3 } job offerings and approximately 300 phD candidates seeking them. A recent report on the production and employment of ph.D.'s in computing science has been apfended to the cover memo of this document. Note that this report only considers Ph. D.s and contains figures of employment of ph.D.s by year and organisation type. Few fields offer the potential for sustained future growth that computing science offers both at the undergraduate and graduate levels.

(2) Departmental vitality.

The Computing Science Department is supported by a strong, research oriented faculty which despite its newness and relative youth has already established an impressive record of recognition for its work, objectively demonstrated by ample grant supfort and publications. over three quarters of the faculty in computing Science have attracted grant money. These grants come from a variety of sources, including NSERC, Canada Council, and the President's research grant, as well as various funding agencies in the United states. Hithout the presence of good graduate students it would be difficult to maintain this momentum of research.
(3) Natural extension to existing program.

The attractive interdisciplinary approach of our present program and the diverse interdisciplinary interests of cur present faculty contribute heavily to the points mentioned above. also, the proposal belcw should be vieued as an extension of what currently is happening under Special Arrangements.

In addition, Senate document s73-63, the computing science undergraduate proposal, was approved by Senate and contains the
following observations regarding graduate studies in computing science:
(a) page 5, "While no graduate programme is presently proposed, programmes will be worked out fcr graduate students in the Arts and Sciences who want to acquire a Computing Science tack ground":
(b) page 6, "The program for majors in Computing Science is organized so that students may take advantage of a number of options:
(1) they may continue graduate work leading to a higher degree in computing Science
(2) they may continue graduate work leading to a higher degree (not in Computing Science) in an Applied or Theoretical Science or Art"
(c) page 31, "A number of courses in Computing Science will be taught [under Special arrangements]".
(b) NEW POSITIONS AND JUSTIPICATICN.

The proposed program, if approved and adopted, would require two and one half additional faculty positions for the Computing Science Department. Uhile considerable expertise is available in the department to cover all of the areas mentioned in (e) below, the present teaching and research requirements of the computing science faculty precludes the possibility of a successful graduate program implementation without additional staffing.

Given the frequencies of offerings specified for the new courses we could comfortatly teach 810, 820, 850, and 860 yearly and 863 semi-annually with $821,830,840,861,862$, and seminar courses offered as scheduled with two and cne half additional faculty members.

Note: Since the origin of this document in 1977, two faculty members have left the Department (Kirkpatrick and Granot) and two have joined (Havens and Luk). While we have considerably streng thened two of our areas described in the proposal, with the new faculty, one area has been weakened with the lcss cf the other faculty. our faculty search committee has identified as the tcp recruitmont priority a person with skills in the weakened area and we are actively conducting a search at this time for such a person. The positicn has been authorised through our dean.

Curricula vitae of all persons wishing to be involved in the proposed program are attached (see Attachment 1). Listed belcw (in alphabetic order) are the names cf these persons along with a statement of their current areas of interest and an indication of their involvement with the program (joint appointments are starred *).

Personnel Interest
Jerry Barenholtz * Lecturer

Margaret Eenston*
Ass't professor
Thomas Calvert * Professor

Nick Cercone Ass't Professor

Subrata Dasgupta
Ass't Professor

Ted Edwards
Ass't Professor

Doreen Godwin Lecturer

Ronald Harrop * Professor

William Havens Ass't professor

Bichard Hobson Ass't Professor

Ross Jewell Assoc. Member

Ho-Shun Luk Ass't Professor

Thomas Peucker * Assoc. Professor

```
Douglas Seeley
    Ass't Professor
```

Graphics, programming Language Development

Scientific Applications, Instructional Aids

Information Processing in Man ε Machine, Biomedical Applications, Graphics

Artificial Intelligence, Programming Languages, Computational Linguistics

Computer Architecture, Microprogramming, Artificial Intelligence

APL Language and Extension, APL Implementation, Hardware Design, Grafhics

Instructional Technclogy

Switching Theory, Autcmata Theory, Logic

Artificial Intelligence, Programming Languages

Microcomputer Architecture, Programming
Environments, Educational Machines, Scientific
Applications Applications

Computer Centre Managenent, PGrformance Evaluation

Information Storage and Fetrieval, Data Base Systems

Graphics, Computer Happing, Picture processing Data Structures

Interactive Grafhics, Ccmputer Animation, Simulation and modelling, Social Implications cf Compuring

Theodor Sterling Professor

Statistics and Data processing Applications, Social Afplications, Systems Design

James Geinkam assoc. Professor

Programming Languages, Biomedical Computing
The computing Science graduate studies comittee presently consists of Nick Cercone, Subrata Dasgupta, Tcm Peucker, and Jay Heinkam.
(d) FIELD' OF STUDY.

Listed belou are six relevant areas within Computing Science from which comprehensive examination material will be draun. The choice of areas was influenced by categories in use at other universities, by faculty interests and also by the desirability of identifying areas of comparable scope. A guiding principle was that each area should be one in which a "well educated computer scientist" ought to have some knowledge. The areas are listed with a brief operational description of their area's content.
(1) Theoretical Computing Science - Theoretical foundaticns and mathematical techniques which pervade all areas within computing Science are accomodated in this area. Courses from this area should provide the student with an intellectual maturity to allow hie to stay abreast of his own discipline.
(2) Artificial Intelligence - This area introduces students to those nonarithmetical applications cf copputing that attempt to achieve goals considered to require human mental capabilities (e.g. complex prcblem solving), model highly organised intellectual activity, and describe purposeful tehaviour.
(3) Programing Languages, and
(4) Programming systems - The subject matter of these two broad areas is concerned with the representations and transformations of information structures and with theoretical models for such representations and transformations.
(5) Computer Design and Organisation - Subject material in this area concentrates on systems having the ability to transform infcrmation. Such systems usually involve the interaction of hardware and software. With the advent cf microprocessors, there appears to be no limit to the potential growth of design and application problems within the area.
(6) Advanced Applications - Diverse methodologies derived from broad applications of computing are concentrated in this area. They include graphics, cartography, medical applications, operations research, etc.

Area Course Content:
For the present, the ccurse cfferings will be restricted to the major courses in the six areas listed below the ones with associated
content descriptions), together tith additional special topics courses and the directed reading ccurses.
(1) Theoretical Computing Science

CMPT 810-3 The Design and Analysis of Algorithms (3-0-0)
Analysis of computational problews and their algorithms on random access machines with various measures of complexity; survey of basic techniques for both design and analysis: applications to both algebraic and combinatorial problems including integer, matrix, and polynomial arithmetic, fast Fourier transforms, grafh and set theoretic algorithms; NP-complete problems and other unifying concepts

CMPT 811-3 Effective and Efficient Ccomputability (3-0-0)*
(2) Artificial Intelligence

CHPT 820-3 Heuristic Programming (3-0-0)
Heuristic problem solving; planning; concept formation; game playing and decision making; theorem proving and heuristic strategies: perception and vision: question-answering; comprehension of natural language.

CMPT 821-3 Pattern Reccgniticn and Image Processing (3-0-0)
The representation of patterns and images; filtering and image enhancement: simple discrimination algorithms: statistical approaches: structural (linguistic) approaches: applications in medicine, earth resourse assessment, etc.
(3) Programming Languages

CMPT 830-3 Compiler Thecry (3-0-0)
Grammars: tcp dcun and bcttom up parsing of context-free languages, Earley's parser; precedence, LI(k), and Lr(k) grammars: $\quad \operatorname{SLR}(k), \quad L A L R(k), L(\mathbb{L}) R(k)$ and LR(k) parsing techniques; transduction grammars: general compiler organisation, code generation and optimizaticn; memory allocation for object prcgrams: garbage collection: compile-time and run-time diagnostics.

CAPT 831-3 Language Design (3-0-0)*
(4) Programming Systems

CMPT 840-3 Advanced Topics in Simulaticn and Modelling (3-0-0) Topics include the design of simulation languages, both

Department of Computing Science Graduate Siudies Proposal... 9
process oriented and event-oriented: optimizing event scheduling; simulation data structures: simulations; queuing networks: simulation the simulation of computer systems.
the validation of optimization: and

CMPT 841-3 Data Base Systems (3-0-0)*
CMPT 842-4 Operating Systems (3-0-0) *
(5) Computer Design ard Organisaticn

CMPT 850-3 Computer Architecture (3-0-0)
parallel processing: SIMD ε MIMD systems, asscciative processors, pipelining, data flow architecture, petri nets: microprogramming: control memory minimization, optimization and verification of microprograms, emulation; fault tolerant computing; performance analysis of computer architectures; computer design and description languages.

CMET 851-3 Switching Theory and Logical Design (3-0-0)*
(6) Advanced Applications

C日PT 860-3 Algorithms of Optimization (3-0-0)
This course will cover a variety of optimization models, that naturally arise in the area of Management Science and operations Research, wich can be formulated as Mathematical programming problems. Topics to be covered include: network flow algorithms: linear programaing: dynamic programming: integer programming; transportation and assignment froblems; non linear programong; and applications of game theory. Corputational aspects of various algorithms vill be discussed. There vill be a strong emphasis on the formulation of problems and the design of algorithes for the various optimization problems.

CMPT 861-3 Biomedical Computing (3-0-0)
Computer and theoretical models of neural networks and physiological control systems (thermal. respiratory. cardiovascular). Selected topics frow: simulation: in physiology: computers in medical diagcnsis; computers in intensive care monitoring: computers in rehabilitaticn and prosthetics: and medical records and data bases.

CMPT 862-3 Computer Mapping (3-0-0)
A stady of the theoretic and algorithmic aspects which are involved in the automated froduction of maps. Three groups of topics will be discussed: kasics - languages data
structures, and picture processing for computer mapping; computer cartography - the handing of points, lines, polygons, surfaces and considerations of their structures, displays, and generalisations; and geographic information systems - topographic, thematic, community, coverage, and cadastral systems, and digital terrain models.

CMPT 863-3 Principles of Computer-Aided Design (3-0-0)
Methodologies of interactive design, user-oriented systems, conversational dynamics, 3-D image representation and building, human factors of input/output devices and display systems, computer touring of 3-D models.

* These titles indicate possible courses which could be developed at some future date to provide additicnal defth within the six major areas. These courses (initially) uill, depending on student demand and faculty availability, be cffered under the special topics designation.
(e) Relationship betheen personnel and core areas.

The table shown below illustrates both the care with wich the proposed graduate studies program was designed and the delicate balance of the present faculty to fill areas necessary for successful implementation of the a program.

Area (1) Theoretical Computing Science
Barenhcltz, Harrop
Area (2) Artificial Intelligence
Calvert, Cercone, Havens
Area (3) Programming Languages Cercone, Edwards, Havens, Weinkam

Area (4) Programming Systems Edwards, Hobson, Jewell, Feucker, Seeley

Area (5) Computer Design and Crganisation Dasgufta, Edwards, Hobson, Harrop, Havens

Area (6) Adyanced Applications Barenholtz, Benston, Calvert, Godwin, Luk, Peucker, Seeley. Sterling, Weinkam

(E) NEH DEGREE.

 M.SC. and Ph.D. degrees.

The M.SC. and the Ph. D. Frograms are envisioned to istart simultaneously. The present faculty of computing science includes five joint appointments, four of whom have had consideratle experience in graduate student supervision at the $P h . D$. level (Benston, calvert, Harrop, peucker). The remaining full time faculty have for the most part participated in the supervision cf graduate students, including the Ph. D. level (Cercone, Seeley. Sterling, Heinkam). Faculty bithin Computing Scienge ferclusive of joint appointments) have attractegmore than $\$ 60,000$ in frants (including $N S E B C$ to carry cut research projects. The joint appointments also hold research grants. This commitment to research sponsorship cn the part of granting agencies shows faith on their part in the capabilities of faculty meabers to carry out high quality research.

(g) academic requirements.

Academic reguirements for the M.SC. and Ph.D. degrees are givenin section (g) - Graduate calendar entry.

We expect full-time graduate students to complete work leading to the M.Sc. degree in about $4-5$ semesters time; the corresponding figure for students working toward the $P h . D$. degree fwith M.Sc. degrees or equivalent) is about $7-10$ semesters.
(h). NEW CCURSBS.

The computing Science program froposes the following new graduate courses:

CMPT 810, The Design and Analysis of. Algorithms (3-0-0)
CMPT 820*3 Heuristic Programming (3-0-0)
CMPT 821 -3 Pattern Recognition and Image Processing (3-0-0)
CMPT 830-3 Compiler Theory (3-0-0)
CMPT $840-3$ Advanced Topics in Siuulaticn and Modelling (3-0 0 (0)
CMPT 850-3 Computer Architecture (3-0-0)
CMPT 860-3 Algorithms of Optimization (3-0-0)

CMPT 861-3 Biomedical computing (3-0-0)
CAPT 862-3 Computer Mapping (3-0-0)
CMPT 863-3 Principles of Computer-Aided Design (3-0-0)
CMPT 881-3 Special Topics
CMPT 882-3 Special Topics
CMPT 883-3 Special Topics
CMET 891-3 Advanced Seminar I
CMPT 892-3 Acivanced Seminar II
CMPT 893-3 Advanced Seminar III
CMPT 894-3 Directed Reading I
CMPT 895-5 Directed Reading II
CMET 898 M.SC. Thesis
CMPT 899 Ph.D. Thesis
See attachment 2 for the individual new course proposals in the prescribed format.

(i) Labobatory factlities.

The computing science program at simon fraser University has computing equipment available for research and instruction including a microprogramable varian $V 75$ (running vortex) with 64 K of core memory and assorted peripheral equipuent. The peripheral equipment includes: (1) 20 megabyte disk capacity (2 fixed, 2 removable platters): (2) 45 IPS $800 / 1600$ BPI dual density tape drive; (3) dual port digital cassette; (4) Centronics 102 character printer; (5) TTY, CRT, Data Media terminals; and (6) a data link to the computing Centre's 370/155 and 370/148 mainframes. The department is alsc equiped with an Evans and Sutherland Picture System I; a DEC PDP $11 / 34$ (running RT11 or UNIX) with 80R of semiconductor memory and standard PDP 11/34 features, and a microprocessor laboratory. This microprocessor laboratory contains tuelve Intel 8080a based mini-micro designers, evaluation kits incluading MC6800, RCA COSAAC, ABD2900, THS 9900, PACE, and Fairchild F8, a 16 channel logic analyzer, 2 oscillcscopes, a universal EPROM programmer, 21 powered breadboards, and 15 lcgic probes. Available for research use is a hardware development computer based on the Intel 8085 with 64 K bytes of RAM, dual floppy disks, an Intecolour CRT, UCSD PASCAL, and an
assembler. This system is interfaced to the Varian, the Computing Centre's mainframes, the EPROM programmer, and has several spare ports for expansion. Also available for research use is a Hewlett Packard 2116 system operated by the Psychclogy Deparrment and a DEC GT40 graphics computer operated by the Kinesiology Department.

In addition to the computing facilities housed within the computing science program, the university computing centre currently offers three major computing systems to tend to the needs of the university community. an IBM 370/155 conputer with 3 megabytes of main memory running under OS/MVT (with WYLBOR) with extensive peripheral devices is the main system available. A newer acquisition is the IBM 370/148 system with 2 megabytes of main memory; it operates under the Michigan Terminal System [MTS], a highly flexible interactive tiaesharing system, which greatly enhances service to the user comunity.

(j) SOURCES OP SUFPORT FOR GRADUATE STUDENTS.

The Computing Science prograx has available a number of teaching assistantships for the support of graduate students. This number (approximately 50 over 3 yearly semesters for 1977-1978) varies depending on enrolment. In addition, a number of faculty are able to support graduate students through their NSERC, SPO and other research grants.

(k) LIERARY RESCURCES AND fUTURE NEEDS.

The library reserves have tefn researched by Mr. Maurice Deutsch to ascertain whether their facilities could support such a program. His report and a subsequent update search made of the library rescurces reveal that they are generally satisfactory and the results of his search are appended as Attachment *3.

(1) ESTIMATED ENRCLAENT.

The computing Science program anticipates accepting ro more than six graduate students in the first year of the program and will accept no more than ten additional students in each of the following two years. at the present time the computing science program could probably accomodate 20-25 graduate students (excluding faculty reguirements).
(m) SPACE REQUIREMENTS.

Space requirements will largely be for graduate students acting as

TAs and／or as research assistarts．offices are presently available for those graduate students who act as TAs though this number is expected tc increase as our enrolment increases．Some of the research space reguired will be provided through the use of the hardware labcratories or spaces presently occupied by computing science equipment（e．g．，the minicomputer or graphics equipment rcoms）．Some additional office space will be needed for those graduate students who are supported as teaching／research assistants in respense to our increased enrclment．As most graduate students probably will be appointed as TAs，tuc or three small instt office rcoms should satisfy the additicnal space required by teaching／research requirements．In addition，one large roon for equipment expansion and laboratcry facilities for research testing should provide a⿴囗十⺝丶 space beyond what is presently cocupied by Computing Science．
（ n ）GRADUATE CALBNDAB ENTRY．
DEPARTMENT CF CCMPDTING SCIENCE
Location：Room 7322－Classrocm Complex
Telephone：$\quad 291-4277$

CHAIRMAN：

Jerry Bar \in nholtz B．S．（Aichigan）．
Lecturer， （Graphics．Programming Language Development）

Margaret L．Benston B．A．（Williamette），Ph．D．（Mash．），
Assistant professor of computing Science and Assistant Professor of Chemistry
（Scientific Applications，Instructional Aids）
 Professor of Ccmfuting Science and professor of Kinesiology
（Information Processing in Man ε Machine， Biomedical Applications，Graphics）

Department of Computing Science Graduate Studies proposal .. 15

```
    Nick J. Cercone B.S.(Steut.).M.S.(Ohio St.),Ph.D.(Alberta),
            Assistant Professor
                            (Artificial Intelligence, Programming Languages,
                        Computational Linguistics)
    Subrata Dasgupta B.E.(Calc.),A.Sc.,Ph.D.(Alberta),
                            Assistant Prcfessor
                            (Computer architecture, Microprogramming.
                        Artificial Intelligence)
E. M. (Ted) Edwards B.SC..#.SC.(UBC)
    Assistant professor
    (APL Language and Extension, API Implementation,
                                Hardware Design, Graphics)
    Doreen Godwin B.Comm. (Carleton).
            Lecturer
                            (Instructional Technology)
    William Havens B.S.,M.S. (Virginia Tech),Pa.D.(UBC),
    Assistant Professor
    (Artificial Intelligence, Programming
    Languages)
    Ronald Harrop B.A.,#.A.,Ph.D.(Cambridge).
            Professor of Comfuting Science and
            professor of Mathematics
                            (Switching Theory, Automata Theory, Logic)
Richard F. Hobscn B.Sc.(Br. Col.).Ph.D.(Materloo).
            Assistant Professor
                                    (Microcomputer Architecture, Programming
                                    Environments, Educational machines, Scientific
                                    Applications)
T. Ross Jewell B.Sc.(Br. Col.),M.S.(California),
    Associate Member
                            (Computer Centre Management, Perfcrmance
                        Evaluaticn)
    Wo-Shun Luk B.A.(Lond.),M.Math(Materlcc),Ph.D. (Alberta),
    Assistant Professor
    (Information Storage and Retrieval, Data Base
        Systems)
Thomas K. Feucker Dr.phil. (HEidelberg).
    Associate Prcfessor of Computing Science and
    Associate professor of Geography
    (Graphics, Computer Mapping, Picture Processing
    Data Structures)
```

Douglas A. R. Seeley

```
B.A.Sc., M.A.SC.,Fh.D. (Toronto).
    Assistant Professor
    (Interactive Grafhics, computer Animation,
    Simulation and Modeliing, Social Implications
    cf Computing)
```

Theodor D. Sterling A.B., M.A. (Chicagc), Ph.D. (Tulane), Professor
(Statistics and Data processing Applications, Social Applications, Systems Design)

Departmental Assistant: Mrs. Elma Krtavac
Location: Rccm 7321 - Classrocm Complex
Telephone: 291-4675
cegrees offered
Tr Computing Science Program offers programs leading to the M.Sc. and Ph.D. degrees ir Computing Science. The Computing Science program provides students at the graduate level with graduate studies in the following specific areas: (i) Theoretical computing Science; (ii) Artificial Intelligence: (iii) Programming Languages; (iv) Programming Systems; (v) Computer Design and organisation: and (vi) Advanced Afplications.

M.SC. EROGRAM

ADMISSION
To qualify for admission to the M.Sc. program a student must, in addition to the general University regulations, have at least \supseteq ither (i) a Bachelor's degree (or equivalent) in computing Science; or (ii) a Bachelor's degree in another discipline and a strong academic backgrcund in, or experience in, Computing Science.

DEGREE REGUIREMENTS

(i) Course Nork

The minimum course requirement for the Master's degrez consists of 12 semester hours of graduate-level course credit at least 9 of which must be in computing science. Additional undergraduate courses way be reguired tc correct deficiences in the studert's background. In addition, students will be required to present a seminar in the department seminar series. Note that students specialisirg in advanced applications may be required tc take appropriate courses in other disciplines.
(ii) Research
\{a\} The student will be reguired to fresent a thesis proposal to the department at a seminar, for approval ky his supervisory committee.
[b] The student will be required to submit and defend a satisfactory thesis. An examining committee will consist of at least three faculty memeers, one from a department other than computing Science.
(iii) Research Seminar

The M.Sc. candidate will be required to present a seminar lecture based on his research. This seminar will normally be presented a few weeks befcre the candidate's thesis oral examination.

Ph. D. PROGRAM
ADMISSION
For admission requirements, refer to the general regulations section.
degree recuigements
(i) Course Work

The student may be required to compiete a number of graduate-level reading and seminar courses. In additicn, he will be required to present a seainar in the department seminar series. Note that students specialising in advanced applications may be required tc take appropriate courses in other disciplines.
(ii) Qualifying Examination

Ey the \in ad of the third semester of Ph.D. work, the student will be required to take a set of written comprehensive qualifying examinations to demonstrate breadth ir comfuting Science. Each student would be required to obtain at least a low pass in each of the five areas identified fexcluding Advanced Applicaticns) with a high pass in two areas. A student who passes this examination rut whose results indicate deficiencies in certain areas, may be reguired to take additional ccurses. A student who fails will, depending on performance, be reguired to withdraw frcm the Ph.D frogram or allowed to take the examiraticn a second time. A student who fails twice will be required to withoraw from the ph.D. program.
(iii) Research
\{a\} The major porticn of the fh. D. frogram will be spert in doing original research.
\{b\} The student's research shall $t \in$ under the direction of a supervisory committee of not fewer than three faculty members.
[c\} The student is formally admitted as a ph. D. candidate contingent on passing an cral candidacy examination in subjects relevant to his general field of research. At the candidacy examination, the student must demonstrate to the satisfaction of the examining committee that he possesses (a) an adeyuate knouledge of his discifline and of the subject matter relevant to his proposed research and (b) the ability to pursue and complete original research at an advanced level. The examination shall be under the direction of the superviscry committet to which two other faculty members have been added. The candidacy examination is normally taken around six months ?fter the student passes written comprehensive qualifying examinations.
\{d\} thesis embodying the results of this research must be presented and defended in an cral examination at the conclusion of the degree program. an examining committee will consist of the supervisory committee and at least two other examiners. One member of the examining committee shall be from a department or discipline cther than that in which the candidate is working, and one member shall be an external examiner who is a recognised authority in the special field cf research.
(iv) Research Seminar

The Ph.D. candidate will be required to present a seminar lecture based cn his research. This seminar will normally be presented a few weeks before the candidate's thesis cral examination.

For further information and regulations for both the M.Sc. and Ph. D. degrees, refer to the General Regulations section of the Graduate Studies Calendar.

DESCEIPTICN OF COMPUTING SCIENCE GRADUATE COURSES

CMPT 810-3 The Design and Analysis of Algorithns
Analysis of computational prcblems and their algorithms on random access

Department of Computing Science Graduate S:udies Proposal .. 18
machines: survey of basic technigues with applications to algebraic, numeric and combinatorial problems; Np-complete problems and other unifying concepts.

CMPT 820-3 Heuristic programming

Heuristic problem solving; flanning; concept formation; game playing and decision making; thecrem proving and herristic strategies; perception and vision: question-answering: comprehension of natural language.

CMPT 821-3 Pattern Fecognition and Image Processing
The representation of patterns and images: filtering and image enhancement; simple discrimination algorithms; statistical and structural approaches; applications in medicine, earth resourses, etc.

CMPT 830-3 Compiler Theory
Precedence, LL(k), LE(k) grammars; SLR(k), LALR(k). L(a)R(k) and LR(k) parsirg techniques; transducticn grammars; general compiler organisation, code generation and optimization: memory allocation for object programs: garbage collecticn.

CMPT 840-3 Advanced Topics in Simulation and Modeling
Topics include the design of simulaticn languages, both process oriented and event-oriented; optimizing event schedulinq; simulation data structures: the validation of simulations; queuing networks; simulation optimization; and the siaulaticr cf computer systems.

CMPT 850-3 Computer Architecture
Parallel fiocessing: SIMD ε MIMD systems, associative processors, pipelining, data flow architecture, petri nets: microprcgramming: control memory minimization, oftimization and verification of microprograms, emulation; fault tclerant computing; performance analysis of computer architectures; computer design and description languages.

CMPT 860-3 Algorithms of Optimization
This course will cover a variety of optimization models, that naturally arise in the area of Management Science and Operations Research, which can be formulated as Mathematical prcgraming problems.

Computer and theoretical models of neural notworks and physiolcgical control systems (thermal. respiratcry, cardiovascular). Simulation in physiology; computers in medical diagonsis: intensive care monitcring: rehabilitaticn and prosthetics; and medical records and data bases.

CMPT 862-3 Computer Mapping

A study of the theoretic and algorithmic aspects which are involved in the automated production of maps. Three topics will be discussed: basics: computer cartography; and geographic information systems.

CMPT 863-3 Principles of Computer-Aided Design
Methodologies of interactive design, user-oriented systems, conversational dynamics, 3-D image representation and building, human factors of input/output devices and display systems, computer touring of 3-D morn?

CMPT 891-3 Advanced Seminar I

CMPT 892-3 Advanced Seminar II
CMPT 893-3 Advanced Seminar III

CMPT 894-3 Directed ieading I

CMPT 895-5 Directed keading II

CMPT 898 H.Sc. Thesis
CMPT 899 Ph.D. Thesis

SPECIAL TOPICS COURSES
In any semester only a very limited number of special topics ccurses will be offered subject to student demand and faculty availability. Details of any special Topics course will be fosted one semester prior to its being cffered.

CMPT 881-3 Special Tcpics
CMPT 882-3 Special Topics

CMPT 883-3 Special Tcpics

ATTACHMENT \#1

NEW COURSE PROPOSAL FORMS

 FOR THE
COMPUTING SCIENCE GRADUATE PROGRAMS

Note: The Graduate Studies Committee approved these new course proposal forms as part of the proposed graduate programs in the Department of Computing Science.

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 810
Title: The Design and Analysis of Algorithms
Description: Analysis of computational problems and their algorithms on random access machines; survey of basic techniques with applications to algebraic, numeric and combinatorial problems; Np-complete problems and other unifying concepts.
Credit Hours: 3 Vec'tor: (3-0-0) Prerequisite(s) if any: none
-

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 6-10
When will course first be offered: Fall, first year of the program

How often will course be offered: once yearly.

JUST IFICATION:

See Justification with Outline of the course (appended).

RESOURCES:

Which faculty member will normally teach the course: David Kirkpatrick
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 排2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3 .

```
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course (see Curriculum vitae - Attachment No. 1)
c) Library resources (see Attachment No. 3)
```


Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77
Faculty:
Date:
Senate Graduate Studies Committee: Date:
Senate. Date:

SIMON FRASER UNIVERSITY

New Graduate Course Proposel Form

CALENDAR INFORMAT ION:

Department: COMPUTING SCIENCE
Course Number: CMPT 820

Title: Heuristic Programming

Description: Heuristic problem solving; planning; concept formation; game playing and decision making; theorem proving and heuristic strategies; perception and vision; question-answering; comprehension of natural language.

Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:

Estimated Enrolment: 6-10
When will course first be offered: Fall, first year of the program How often will course be offered: once yearly.

JỤST IFICAT ION:

See Justification with Outline of the course (appended).

RESOURCES :

Which faculty member will normally teach the course: Nick Cercone
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

```
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course (see Curriculum vitae - Attachment No. 1)
c) Library resources (see Attachment No. 3)
```

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

Topic
I. Meanings, Goals, and Methods of Artificial Intelligence. $\quad 1 / 2$
$1 \quad 1 / 2$
II. LISP review, LISP programming and techniques.
$1 / 2$
III. State Space Representations and Search Methods.$1 \quad 1 / 2$
IV. Game Playing.V. Pattern Recognition, Classification for ComputerVision and Perception.$1 \quad 1 / 2$VI. Theorem Proving using the Resolution Principle.
[II. Natural Language Representation and Understanding. $21 / 2$1
VII. Question-Answering Systems.IX. Planning.2
IX. Planning.
X. Miscellaneous.

JUSTIFICATION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 820. An important aspect of Computing Science occurs because of the use of algorithms in problem solving. This aspect naturally gives rise to subfields such as natural and artificial language translation, artificial intelligence, and numerous applications of computers for which artificial intelligence techniques and methodologies are appropriate. Since heuristic programming is the methodology with the largest number of practitioners within artificial intelligence, it was chosen as the topic of CMPT 820.

LIBRARY REFERENCE MATERIALS
Proceedings

IJCAI, Walker, D., and Norton, L. (eds), (1969). Proceedings of the International Joint Conference on Artificial Inteligence, Washington, D.C., MITRE Corp.

IJCAI2, British Computer Society, (1971). Proceedings of the Second International Joint Conference on Artificial Intelligence, London, British Computer Society.

IJCAI3, Stanford University, (1973). Proceeding of the Third International Joint Conference on Artificial Intelligence, Stanford, California, Stanford University.

Aho, CURRENTS IN THE THEORY OF COMPUTING, Prentice - Hall, 1973.
Aho, Hopcroft, and Ulman, THE DESIGN AND ANA:YSIS OF COMPUTER ALGORITHMS, Addison-Wesley, 1974.

Borodin and Munio, THE COMPUTATIONAL COMPLEXITY OF AIGEBRAIC AND NUMERIC PROBLEMS, American Elsevier, 1975.

Deo, GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE, 1974.

Even, ALGORITHM COMBINATIONS, 1973.
Goodman and Hedetniem, INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS, McGraw-Hil1, 1977.

Harary, GRAPH THEORY, Addison-Wesley, 1969.
Knuth, THE ART OF COMPUTER PROGRAMMING, volumes 1-3, Addison-Wesley, 1968, 1969, 1973.

Knuth, THE ART OF COMPUTER PROGRAMMING, volume 4, (Combinatoral Algorithms), Addison-Wesley (to appear).

Lчi, C.L., INTRODUCTION TO COMBINATORIAL MATHEMATICS, McGraw-Hill, 1968.
Miller and Thatcher, COMPLEXITY OF COMPUTER COMPUTATIONS, Plenum Press, 1972.

Nizenhuie and Wolfe, COMBINATORIAL ALGORITHMS, Academic Press, 1975.
Rheingold, Nieregelt and Deo, COMBINATORIAL COMPUTING, Prentice Hall (to appear).
Rustin, COMPUTATIONAL COMPLEXITY, Algorthmics Press, 1971.
Rustin, COMPUTATIONAL ALGORI'HMS, Algorthmics Press, 1972.
Traub, COMPLEXITY OF SEQUENTIAL AND PARALLEL NUMERICAL ALGORITHMS, Academic Press, 1973.

Traub, ALGORITHMS AND COMPLEXITY, Academic Press, 1976.
Whitehead, COMBINATORIAL ALGORITHMS, Courant Institute Lecture Notes, 1973.

Proceedings (Annual)
ACM Symposia on Theory of Computing, Association for Computing Machinery
Symposium on Foundations of Computer Science, IEEE or IEEE Computer Society

CMPT 810-3 (3-0-0) The Design and Analysis of Algorithms oUTLINE

1. Introduction
analysis of algorithms - basic assumptions and limitations, points of contact with the traditional theory of computation automata theory and computational complexity
2. Basic Design and Analysis Techniques
review of design considerations recursion - divide and conquer
analysis of techniques asymptotic analysis upper and lower bounds on complexity
3. Complexity Hierarchy
linear or near linear time algorithms
polynomial time algorithms
polynomial complete problems
intractable problems
4. Set and Graph Theoretic Algorithms
basic algorithms
sorting and selection algorithms
find union problems graph isomorphism and related problems plenarty algorithms
5. Algebraic Algorithms
lower bound techniques
matrix multiplication and related problems
polynomial arithmetic
FFT and related problems
6. Selected Topics (as time permits)
complexity of parallel processes complexity of numerical computations study of heuristic and approximation algorithms

JUSTIFICATION
In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 810. One of the most important aspects of Computing Science is the study of the characterization and limitations of algorithms and computation. This part of Computing Science contains theories of computability and computational complexity. CMPT 810 is concerned especially with the latter and is concerned with the description of algorithms, as well as their effeciency and correctness.

IJCAI4, AI Lab, MIT, (1975). Proceedings of the Fourth International Joint Conference on Artificial Intelligence, Tiblisi, USSR.

IJCAI5, MIT, (1977). Proceedings of the Fifth International Joint Conference on Artificial Intelligence, $M \quad I \quad T$, Cambridge, Massachusetts.

Books

Arbib, M. (1964). BRAINS, MACHINES, AND MATHEMATICS, McGraw Hill, New York.

Arnheim, R. (1971). VISUAL THINKING, Univ. of California Press, Berkeley, California.

Dreyfus, H. (1972). WHAT COMPUTERS CAN'T DO: A CRITIQUE OF ARTIFICIAL REASON, Harper and Row, New York.

Duda, R. and Hart, P. (1973). PATTERN CLASSIFICATION AND SCENE ANALYSIS, Wiley, New York.

Fogel, L., Owens, A., and Walsh, M. (1966). ARTIFICIAL INTELLIGENCE THROUGH SIMULATED EVOLUTION, Wiley, New York.

Feigenbaum, E., and Feldman, J. (eds), (1963). COMPUTERS AND THOUGHT, McGraw Hill, New York.

MACHINE INTELLIGENCE SERIES 1-8, American Elsevier, New York.
Jackson, P. (1974). INTRODUCTION TO ARTIFICIAL INTELLIGENCE, Petrocelli, New York.

Hunt, E. (1975). ARTIFICIAL INTELLIGENCE, Academic Press, New York.
Minsky, M. (ed). (1968). SEMANTIC INFORMATION PROCESSING, MIT Press, Cambridge, Massachusetts.

Nilsson, N. (1971). PROBLEM SOLVING METHODS IN ARTIFICIAL INTELLIGENCE, McGraw Hill, New York.

Schank, R. and Colby, K. (1973). CONCEPTUAL INFORMATION PROCESSING, Freeman, San Francisco.

Simon, H. (1969). THE SCIENCES OF THE ARTIFICIAL, MIT Press, Cambridge, Massachusetts.

Slagle, J. (1971). ARTIFICIAL INTELLIGENCE: THE HEURISTIC PROGRAMMING APPROACH, McGraw Hill, New York.

Winston, P. (1977). ARTIFICIAL INTELLIGENCE, Addison-Wesley, New York.

Artificial Intelligence
American Journal of Computational Linguistics
Pattern Recognition

SIMON FRASER UNIVERSITY
New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: COMPUTING SCIENCE \quad Course Number: CMPT 821
Title: Pattern Recognition and Image Processing
Description: The representation of patterns and images; filtering and image enhancement; simple discrimination algorithms; statistical and structural approaches; applications in medicine, earth resources, etc.

Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 6-10
When will course first be offered: Spring, first year of the program How often will course be offered: once yearly (if required).

JUSTIFICATION:
See Justification with Outline of the course (appended).

RESOURCES:
Which faculty member will normally teach the course: Tom Calvert
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course (see Curriculum vitae - Attachment No. i) c) Library resources (see Attachment No. 3)

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

SFU: New Graduate Course Proposal Form (cont)
I. The representation of patterns and images. 2 weeks
II. Filtering and image enhancement. 2 weeks
III. Simple discrimination algorithms. 2 weeks
IV. Statistical approaches.3 weeks
V. Applications in medicine, earth resourceassessment, etc.3 weeks
JUSTIFICATION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 821. Humans and other animals survive in their complex and changing environment by using sophisticated sensory systems to detect, classify, and interpret patterns of input stimulation. For over two decades workers in artificial intelligence have been trying to approximate mechanically the performance of that ultimate in biological pattern recognizers, human vision. Despite this tremendous research investment computers still cannot "see" even a fraction as well as people. This course is important in order to get an idea of what has been done and how much remains to be accomplished.

LIBRARY REFERENCE MATERIALS
Books
Young, T., and Calvert, T., (1974). CLASSIFICATION, ESTIMATION, AND PATTERN RECOGNITION, American Elsevier.

Patrick, E., (1972). FUNDAMENTALS OF PATTERN RECOGNITION, Prentice Hall.

Papoulis, A., (1968). SYSTEMS AND TRANSFORMS WITH APPLICATIONS IN OPTICS, McGraw-Hill.

Sebestgen, G., (1962): DECISION MAKING PROCESSES IN PATTERN RECOGNITION, Macmillian.

Pattern Recognition

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE Course Number: CMPT 830
Title: Compiler Theory
Description: Precedence, LL(k), LR(k) grammars; SLR(k), LALR(k) $L(m) R(k)$ and $L R(k)$ parsing techniques; transduction grammars; general compiler organisation, code generation and optimization; memory allocation for object programs; garbage collection.

Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 6-10
When will course first be offered: Spring, second year of the program How often will course be offered: once yearly (if required).

```
-------------------------------------------------------------------
```


JUST IFICAT ION:

See Justification with Outline of the course (appended).

RESOURCES:
Which faculty member will normally teach the course: Jay Weinkam
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course (see Curriculum vitae - Attachment No. 1) c) Library resources (see Attachment No. 3)

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

SFU: New Graduate Course Proposal Form (cont)

OUTLINE

Topic No. of Weeks
I Elements of Language Theory
$11 / 2$

- Representation of Languages
- Regular Sets
- Context Free Languages
- Pushdown Automata

II Theory of Translation

- Syntax-Directed Translation
- Lexical Analysis
- Parsing

Single-Pass No. Backtrack Parsing Methods

- LL(k) grammars
- Deterministic Bottom-up Parsing
- Precedence Grammars
- Other shift-reduce algorithms

IV General Parsing Methods
1

- Backtrack Parsing
- Tabular Parsing Methods

V Bookkeeping

- Symbol Tables

1

- Hash tables and hashing functions
- Property Grammars

Run Time Storage Organization
1

- Storage for elementary data types, arrays, strings, structures
- Actual/formal parameter correspondence
-Storage administration for block-structured languages
- Dynamic storage allocation

VII Translation and Code Generation
2

- The Role of Translation in Compiling
- Syntax-directed Translations
- Generalized Translation schemes

Code-Opt imization

- Staight Line Code
- Arithmetic Expressions
- Programs with loops
- Data flow Analysis

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 830. An important aspect of computing science is the study of the representations of algorithms and their data. This accounts for the large amount of research that has been done in the areas of problem-oriented language design, programming language specification and translation techniques, etc. Compiler design lies at the heart of this important subfield of computing science and CMPT 830 is designed to teach the current thinking and methodologies researchers employ when they design and implement compilers.

LIBRARY REFERENCE MATERIALS

1. A.V. Aho \& J.D. Ullmann, THE THEORY OF PARSING, TRANSLATION AND COMPILING, VOI, 1: PARSING, Prentice-Hal1, N.J. 1972.
2. A.V. Aho \& J.D. Ullman, THE THEORY OF PARSING, TRANSLATION AND COMPILING, VOL 2: COMPILING, Prentice-Hall, N.J. 1972.
3. D.G. Gries, COMPILER CONSTRUCTION FOR DIGITAL COMPUTERS, John Wiley, N.Y., 1971.
4. P.M. Lewis II, D.J. Rosenkrantz, R.E. Stearns, COMPILER DESIGN THEORY, Addison-Wesley, 1976.
5. W. Wulf, R.K. Johnsson, C.B. Weinstrock, S.O. Hobbs, C.M. Geschke, THE DESIGN OF AN OPTIMIZING COMPILER, Elsevier, N.Y., 1975.
6. McKeeman, W., Horning, J., and Wortman, D., A COMPILER GENERATOR, Prentice Hall, 1970.
7. Hopgood, F., COMPILING TECHNIQUES, American Elsevier, 1969.
8. Rustin, R., DESIGN AND OPTIMIZATION OF COMPILERS, Prentice Hall, 1972.
9. Randall, B., and Russel1, L., ALGOL 60 IMPLEMENTATION, Academic Press, 1969.
10. Griswold, K., THE MACRO IMPLEMENTATION OF SNOBOL 4, W. H. Freeman, 1972.
Journa!s

SIGPLAN (Association for Computing Machinery Special Interest Group)

SIMON FRASER UNIVERSITY
New Graduate Course Proposal Form
-
CALENDAR INFORMATION:
Department: COMPUIING SCIENCE
Course Number: CMPT 840
Title: Advanced Topics in Simulation and Modelling
Description: Topics include the design of simulation languages, both process oriented and event-oriented; optimizing event scheduling; simulation data structures; the validation of simulations; queuing networks; simulation optimization; and the simulation of computer systems.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:

Estimated Enrolment: 6-10
When will course first be offered: Fall, second year of the program How often will course be offered: once yearly (if required).

JUST IFICATION:

See Justification with Outline of the course (appended).

RESOURCES :
Which faculty member will normally teach the course: Doug Seeley
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: a) Out line of the Course
b) An indication of the competence of the Faculty member to
give the course (see Curriculum vitae - Attachment No. 1)
c) Library resources (see Attachment No. 3)

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77
Faculty:
Date:
Senate Graduate Studies Committee: Date:
Senate:
Date:

SFU: New Graduate Course Proposal Form (cont)

```
1. Simulation Language Design
    the control structure of GPSS
    the control structure of SIMSCRIPT II. }
    the control structure of SIMULA
    event scheduling algorithms
    data structures for simulation
    the parallel processing paradigm
    conditional events
2. Simulation Experiments
    regression
    analysis of variance
    design of simulation experiments
    search methods in optimization
    conjugate gradient methods
3. Simulation Validation
        input - output analysis
    time series analysis
    statistical tests
    internal validity
    sub-model validity
    open problems
4. Continuous Systems Simulation
    timing mechanisms
    numerical computation
    modelling concepts
    CSMP
    DYNAMO
    hybrid simulation
    accuracy considerations
    computer - aided modelling
5. Systems Dynamics Modelling
    elements of control and feedback
    entropy and variety
    systems organization
    industrial dynamics
    resource models
    law of requisite variety
    CYBERSTRIDE
    modelling issues in the Club of Rome studies
```

6. Simulation of Computer Systems
system measurement
measurement distortion
disk systems
time-sharing systems
virtual memory systems
distributed processing and networks
real - time control

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 850

Title: Computer Architecture

Description: Parallel processing: SIMD \& MIMD systems, associative processors, pipelining, data flow architecture, 'Petri nets; microprogramming: control memory minimization, optimization and verification of microprograms, emulation; fault tolerant computing; performance analysis of computer architectures; computer design and description languages.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:

Estimated Enrolment: 6-10
When will course first be offered: Fall, first year of the program
How often will course be offered: once yearly.

JUSTIFICATION:

See Justification with Outline of the course (appended).

RESOURCES :

Which faculty member will normally teach the course: Subrata Dasgupta
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: \quad a) Out line of the Course
b) An indication of the competence of the Faculty member to
c) give the course (see Curriculum vitae - Attachment No. 1)

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Stiudies Committee: yes Date: 19/5/77
Faculty:
Date:
Senate Graduate Studies Committee: Date:
Senate:
Date:

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 840. The current CMPT 305 is only too brief an exposure to this widely applied computing tool. This course provides a natural extension into more difficult areas of discrete simulation and discusses the methodology of continuous systems simulation which 305 has no time to develop.

LIBRARY REFERENCE MATERIALS

Books

Maisel, H. and Grugoli, G., SIMULATION OF DISCRETE STOCHASTIC SYSTEMS, S. R. A., 1972.

Emshoff, T.R., and Sisson, R.L., DESIGN AND USE OF COMPUTER SIMULATION MODELS, Macmillan, 1972.

Forrester, T.W., INDUSTRIAL DYNAMICS, M. I. T. Press, 1961.
Forrester, T.W., PRINCIPLES OF SYSTEMS, Wright-Allen, 1968.
Oed-Smith, R.T. and Stephenson, J., COMPUTER SIMULATION OF CONTINUOUS SYSTEMS, Cambridge University Press, 1975.

Mesarovic, M., and Pestel, E., MANKIND AT THE TURNING POINT, Signet, 1976.

Ashby, R., DESIGN FOR A BRAIN. Chapman and Hall, 1960.
Beer, S., PLATFORM FOR CHANGE, Wiley, 1975.
Everling, W., EXERCISE IN COMPUTER SYSTEMS ANALYSIS, Springer-Verlag, 1972.

Dugh, A., DYNAMO USERS MANUAL, M. I. T. Press, 1963.
Dahl, O., and Nygaard, "SIMULA - An Algol-based Simulation Language", Communications of the ACM, September, 1966.

Kiviat, P.J., ct al., 'The SIMSCRIPI II PROGRAMMING LANGUAGE, Prentice-Hall, 1968.

SFU: New Graduate Course Proposal Form (cont)
CMPT 850-3 (3-0-0) Computer Architecture
OUTLINE
TOPICS No. of Weeks
I Taxonomy of Computer Structures $1 / 2$
II Array Machine Organization and Programming- Principles and applications ofarray processing- Architecture of the ILLIAC IV- Data and Program Organizations
Associative Processing II
IV Multiprocessor Organizations- Processor and MemoryInterconnection Structures

- C.mmp system- Performance analysis of multiprocessors
V
$V \quad$ Pipeline Processing$11 / 2$
- Associative Memories
- Fully Parallel \& Bit Serial
Associative Processors
- Processor and Memory Interconnection Structures2
- Overlap designs
- Principles of Pipeline design
- Pipeline processing ofarithmetic operations
- Vector Processing
- MU5 and the TI ASC
VI Principles of data-flow architecture $1 / 2$
VII Principles of Emulation 2
- The design of DEL and HLL Machines- Firmware/Hardware Implementation ofOperating System Functions
VIII Design of Control Store Organizations 1
- ROM and WCS Microword Structures
- Control Store Word Minimization Techniques
- Microprogram Optimization
IX Design and verification of Microprograms $11 / 2$
- lligh Level Microprogramming Languages
- Formal Techniques for Software and Firmware Verification
X Protection in Computer Systems 1
- Hardware/Firmware Implementation
of Capabilities
XI Principles of Fault Tolerant Computing
- Hardware/Firmware Implementation of Capabilities
XI Principles of Fault Tolerant Computing

JUSTIFICAT ION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 850. With the advent of inexpensive microprocessors a few years ago, the traditional design of computing systems has undergone a tremendous development. Inovative design techniques are being introduced as well as new applications. CMPT 850 is designed to present material that will augment a student's background in computer architecture and enable him to try inovative designs and computer organisations of his own. This fundamental course for computing scientists and computer engineers is the study of the organisation and interconnection of components of computer systems.

LIBRARY REFERENCE MATERIALS

Books
C.G. Bell \& A. Newel1, COMPUTER STRUCTURES: READINGS AND EXAMPLES, McGraw-Hill, N.Y., 1971.
H.S. Stone (Editor), AN INTRODUCTION TO COMPUTER ARCHITECTURE, Science Research Associates, Chicago, 1975.
C.C. Foster, CONTENT-ADDRESSABLE PARALLEL PROCESSORS, Van Nostrand Reinhold Co., N.Y., 1976.
C.C. Foster, COMPUTER ARCHITECTURE. (2nd Edition), Van Nostrand Reinhold Co., N.Y., 1976.
E. I. Organick, COMPUTEF SYSTEM ORGANIZATION: THE B5700/B6700 SERIES, Academic Press, N.Y. 1973.
P. H. Enslow (Ed), MULTIPROCESSORS AND PARALLEL PROCESSING, John Wiley \& Sons, N.Y., 1974.
Y. Chu (Ed), HIGH LEVEL LANGUAGE COMPUTER ARCHITECTURE, Academic Press, N.Y., 1975.
A.K. Agrawala \& T.G. Rat:scher, FOUNDATIONS OF MICROPROGRAMMING, Academic Press, N.Y., 1976.
R. Hartenstein \& R. Zaks, (Ed.), MICROARCHITECTURE OF COMPUTER SYSTEMS, North-Holland, Amsterdam, 1975.
A. B. Salsbury, MICROPROGRAMMABLE COMPUTER ARCHITECTURES, Elsevier-North-Hollard, N.Y., 1976.

Proc. First Annual Symposium on Computer Architecture (ACM/IEEE), 1973
Proc. Second Annual Symposium on Computer Architecture (ACM/IEEE), 1975
Proc. Third Annual Symposium on Computer Architecture (ACM/IEEE), 1976
P'roc. Fourth Annual Symposium on Computer Architecture (ACM/IEEE), 1977
IEEE Transactions on Computers
ACM Computing Surveys
Communications of the ACM

CALENDAR INFORMATION：
Department：COMPUTING SCIENCE
Course Number：CMPT 860
Title：Algorithms of Optimization
Description：This course will cover a variety of optimization models， that naturally arise in the area of Management Science and Operations Research，which can be formulated as Mathematical Programming problems．
Credit Hours： 3 Vector：（3－0－0）Prerequisite（s）if any：none

ENROLMENT AND SCHEDULING：
Estimated Enrolment：6－10
When will course first be offered：Spring，first year of the program How often will course be offered：once yearly．

JUST IFICAT ION：

See Justification with Outline of the course（appended）．

RESOURCES：
Which faculty member will normally teach the course：Daniel Granot
What are the budgetary implications of mounting the course：
a） $1 / 4$ faculty person per offering
b）computing costs－see attachment $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ 2 ~ c o v e r ~ m e m o ~$
Are there sufficient Library resources（append details）：see Attachment Number 3.

Appended：a）Outline of the Course
b）An indication of the competence of the Faculty member to give the course（see Curriculum vitae－Attachment No．1）
c）Library resources（see Attachment No．3）

Approved：Departmental Graduate Studies Committee：yes
Date：29／4／77

Faculty Graduate Studies Committee：yes
Faculty：
Senate Graduate Studies Committee：Date：
Senate：

Date：19／5／77
Date：

Date：

OUTLINE
I. Network Flow Algorithms
II. Linear Programming
III. Dynamic Programming
IV. Integer Programming
V. Transportation and Assignment Problems
VI. Non-linear Programming
VII. Applications of Game Theory
VIII. Computat ional Aspects of Various Algorithms
IX. Design of Algorithms for Various Optimization Problems

JUSTIFICATION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 860. The scientific approach to decision making that involves the operations of organizational systems is an important application area for computing science. CMPT 860 is designed to make the tools available to researchers who do research concerned with the automatic analysis and interpretation of the conduct and operations or activities within and organization. An additional consideration is finding the best of optimal solution to a particular problem.

LIBRARY REFERENCE MATERIALS

Books

Hillier, F., and Lieberman, G., (1967). INTRODUCTION TO OPERATIONS RESEARCH, Holden-Day, San Francisco, California.

Churchman, C., Ackoff, R., and Arnoff, E., (1957). INTRODUCTION TO OPERATIONS RESEARCH, John Wiley, New York.

Miller, D., and Starr, M., (1960). EXECUTIVE DECISIONS AND OPERATIONS RESEARCH, Prentice Hall, Englewood Cliffa, N. J.

Shuchman, A., (1963). SCIENTIFIC DECISION MAKING IN BUSINESS, Holt, Rinehart, and Winston, New York.

Feller, W., (1957). AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, John Wiley, New York.

Parzen, E., (1960). MODERN PROBABILITY THEORY AND ITS APPLICATIONS, John Wiley, New York.

Dantzig, G., (1963). LINEAR PROGRAMMING AND EXTENSIONS, Princeton University Press, N. J.

Hadley, G., (1962). LINEAR PROGRAMMING, Addison-Wesley, Reading, Massachusetts.

Dresher, M., (1961). GAMES OF STRATEGY: THEORY AND APPLICATIONS, Prentice Hall, Englewood Cliffs, N. J.

Luce, R., and Raiffa, H., (1957). GAMES AND DECISIONS, John Wiley, New York.

Vajda, S., (1960). AN INTRODUCTION TO LINEAR PROGRAMMING AND THE THEORY OF GAMES, Methuen, London.

Cox, D., and Smith, W., (1961). QUEUES, John Wiley, New York.

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 861

Title: Biomedical Computing

Description: Computer and theoretical models of neural networks and physiological control systems (thermal, respiratory, cardiovascular). Simulation in physiology computers in medical diagonsis; intensive care monitoring; rehabilitation and prosthetics; and medical records and data bases.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 6-10
When will course first be offered: Spring, second year of the program How often will course be offered: as enrolment justifies.

JUSTIFICATION:

See Justification with Outline of the course (appended).

RESOURCES:

Which faculty member will normally teach the course:
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: a) Out line of the Course

b) An indication of the competence of the Faculty member to

c) Live the course (see Curriculum vitae -

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77 Faculty:

Date:
Senate Graduate Studies Committee: Date:
Senate:
Date:

SFU: New Graduate Course Proposal Form (cont)
CMPT 861-3 (3-0-0) Biomedical Computing
OUTLINE
I. Simulation in Physiology
II. Computers in Medical Diagnosis
III. Computers in Intensive Care Monitoring
IV. Computers in Rehabilitation and Prosthetics
V. Medical Records and Data Bases

JUST IFICATION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 861. The use of computers in medical research is a rapidly growing phenomena. Research money is becoming available to capable computer scientists who wish to persue this advanced application. In T. Calvert, J. Weinkam, and T. Sterling, Simon Fraser has more than ample expertise to nurture this application and make it one of the outstanding graduate level computing courses.

LIBRARY REFERENCE MATERIALS

```
Biomedical Engineering
Transactions of IEEE
Computers in Biology and Medicine
Biometrics
Computer Programs in Biomedicine
Radiology
British Journal of Radiology
```

Title: Computer Mapping
Description: A study of the theoretic and algorithmic aspects which are involved in the automated production of maps. Three topics will be discussed: basics; computer cartography; and geographic information systems.

Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 6-10
When will course first be offered: Spring, first year of the program How often will course be offered: as enrolment justifies.

JUSTIFICATION:
See Justification with Outline of the course (appended).

RESOURCES :

Which faculty member will normally teach the course: Tom Peucker
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course (see Curriculum vitae - Attachment No. 1)
c) Library resources (see Attachment No. 3)

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77
Faculty:
Date:
Senate Graduate Studies Committee: Date:
Senate:
Date:

outline

I. Introduction
-Overview
-Computer Graphics
-Surveying
II. Line Handling
-Theory
-Display
-Generalisation
III. Polygons
-Data Structures
-Display
IV. Points
-Symbolism
-Generalisation
V. Surface Manipulation
-Theory
-Data Structures
-Interpolation
-Triangulation
-Smoothing
-Generalisation
VI. Surface Display
-Contouring
-Shading

- Inclined and Shaded Contours
- Profiles
-Radar Maps
VII. Geographic Information Systems
-Introduction
-Overview and History
-Data Structures
VIII. Topographic Information Systems
-Hardware
-The Map as Information Storage
-Generalisation Examples
IX. Thematic Information Systems
-Graphic Symbolism
-Statistical Geography
-Examples

X. Cadastral Systems
-Topological Data Structures
-Survey Adjustment

```
    XI. Geocoding Systems
    -The Geographic Base File
    -The DIME file
    -GRDSR
    -Data Retrieval
XII. Resourse Systems
    -Polygon Overlays
    -The Grid Approach
    -Examples
XIII. Digital Terrain Models
    -Data Gathering
    -Interpolation
    -Contouring
    -Data Structures
    -Examples
XIV. Integrated GIS
    -Interfaces
    -Reference Systems
    -Planning
```

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 862. Many of the problems faced by geographers have no algorithmic solution. The techniques developed within artificial intelligence have, as yet, to prove of real value to computer cartographers. This application, important in its scope and in its implications, deserves our special attention since we have at Simon Fraser both the equipment (our new Graphics laboratory) and the personnel to make Simon Fraser the leading institution in this area. CMPT 862 will attempt to teach and motivate computing scientists interested in persuing the automated production of maps.

LIBRARY REFERENCE MATERIALS

Books

Davis, J., and McCullagh (eds), (1975). DISPLAY AND ANALYSIS OF SPATIAL DATA, John Wiley and Sons, London.

MacDougal1, E., (1976). COMPUTER PROGRAMMING FOR SPATIAL PROBLEMS, London.

Mordbeck, S., and Rystedt, B., (1972). COMPUTER CARTOGRAPHY, Lund.
Peucker, T., (1972). "Computer Cartography", Resource Paper No. 17, AAG, Washington.

Tomlinson, R. (ed), (1970). ENVIRONMENT INFORMATION SYSTEMS, Ot tawa.
Tomlinson, R. (ed), (1972). GEOGRAPHIC DATA HANDLING, 2 Volumes, Ottawa.
Tomlinson, R., Calkins, H., and Marble, D. (eds), (1976). COMPUTER handiling of geographic data, Paris.

Proceedings
Nuto-Carlo II: Proceedings of the International Symposium on Computer Assisted Cartography, Washington, 1975.
Experimental Cartographic Unit: Royal College of Arts: Automatic Cartography and Planning, London, 1970.
Taylor, D. (ed), Proceedings of the Workshop on Current Issues in Geographic Data Processing, Ottawa, 1976.

SIMON FRASER UNIVERSITY
New Graduate Course Proposal Form

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE Course Number: CMPT 863
Title: Principles of Computer-Aided Design
Description: Methodologies of interactive design, user-oriented systems, conversational dynamics, 3-D image representation and building, human factors of input/output devices and display systems, computer touring of 3-D models.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none
\qquad

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 8-15
When will course first be offered: Fall, first year of the program How often will course be offered: alternate years.
\qquad
JUST IFICATION:
See Justification with Outline of the course (appended).

RESOURCES:

Which faculty member will normally teach the course: Doug Seeley
What are the budgetary implications of mounting the course:
a) 1/4 faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3 .

Appended: a) Out line of the Course
b) An indication of the competence of the Faculty member to
give the course (see Curriculum vitae - Attachment No. 1)
c) Library resources (see Attachment No. 3)

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77
Faculty:
Date:
Senate Graduate Studies Committee: Date:
Senate:
Date:

SFU: New Graduate Course Proposal Form (cont)
CMPT 863-3 (3-0-0)
Principles of Computer-Aided Design
OUTLINE
i. Interactive Design
design process loops graphic feedback control functions input/output devices graphic representations menu tactics
the screen as a working environment
databases for "scratch-pads" (partially specified designs)
II. Conversational Dynamics
conversational state
goal-oriented design
context guidance
visual syntax
archiving prototypes
user control of system
III. User-Oriented Systems
system extensibility
action inference
knowledge-based graphics
idiosyncratic systems
iconic systems
LOGO
SMALLTALK
PYGMALION
THE ARCHITECTURE MACHINE
IV. Human Factors of Display Systems
visual perception channel
extending channel capacity
short-term memory characteristics
attention and vigilance
chunking, multi-dimensional displays
response time requirements
display tactics
aids to learning
v. Human Factors of Input/Output Devices representations of data functional properties of devices analogue control the tactile channel sensory context guidance sensory feedback

```
VI. 3-D Image Building
    3-D representations
    procedural data
    image.sculpting
    image building primitives
    hidden-line removal
    hidden-surface removal
    types of display coherence
VII. Computer Touring
    simulated motion
    representation of micro-worlds
    frame-frame coherence
    real-time experiments
    polyhedral structures
    graphic working sets
```


JUSTIFICATION

In addition to the justification mentioned in the cover memorandum, the following rationale is appropriate for CMPT 863. With the recent acquisition of the Evans and Sutherland Picture Processing system and the active interests of Seeley, Calvert, and Barenholtz interactive graphics is becoming a strength in the Program. This course is a natural extension and advance on the related undergraduate courses and is eminently applicable in other departments such as Kinesology, Physics, Mathematics, and Chemistry.

LIBRARY REFERENCE MATERIALS

Mártin, James, (1973). THE DESIGN OF MAN-COMPUTER DIALOGS, Prentice Hall, New York.

Kay, Alan, (1969). "The Reactive Engine", PhD Thesis, University of Utah, Salt Lake City, Utah.

Smith, D., (1975). "PYGMALION, A Creative Programming Environment", PhD Thesis, Stanford University, Stanford, California.

Winston, P., (1975). THE PSYCHOLOGY OF COMPUTER VISION, McGraw Hill, New York.

Keele, J., (1975). ATTENTION AND HUMAN PERFOKMANCE, Goodyear.
Learning Research Group, (1975). "Personal Dynamic Media", Xerox PARC, Palo Alto, California.

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form

CALENDAR INFORMAT ION:
Department: COMPUTING SCIENCE
Course Number: CMPT 881
Title: Special Topics
Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENKOLMENT AND SCHEDULING:
Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICATION:

Cnecial topics courses should be offered for the following reasons: (i) Before a new course is added to the curriculum, special, topics offers the test vechicle for testing and evaluating the course's potential for inclusion into the calendar as a permanent course; (ii) special topics courses enhance the existing program offerings; (iii) special topics provide the program with the opportunity to take advantage of visitors and new faculty with expertise in a particular area not normally covered in the present curriculum; and (iv) special topics allow latitude for course development.

RESOURCES:

Which faculty member will normally teach the course:
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see at tachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

New Graduate Course Proposal Form

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 882
Title: Special Topics
Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICATION:

> Special topics courses should be offered for the following reasons: (i) Before a new course is added to the curriculum, special topics offers the test yechicle for testing and evaluating the course's potential for inclusion into the calendar as a permanent course; (ii) special topics courses enhance the existing program offerings; (iii) special topics provide the program with the opportunity to take advantage of visitors and new faculty with expertise in a particular area not normally covered in the present curriculum; and (iv) special topics allow latitude for course development.

RESOURCES:

Which faculty member will normally teach the course:
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: COMPUTING SCIENCE
Course Number: CMPT 883
Title: Special Topics
Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICATION:

Special topics courses should be offered for the following reasons: (i) Before a new course is added to the curriculum, special topics offers the test vechicle for testing and evaluating the course's potential for inclusion into the calendar as a permanent course; (ii) special topics courses enhance the existing program offerings; (iii) special topics provide the program with the opportunity to take advantage of visitors and new faculty with expertise in a particular area not normally covered in the present curriculum; and (iv) special topics allow latitude for course development.

RESOURCES:

Which faculty member will normally teach the course: Falty
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: COMPUTING SCIENCE
Course Number: CMPT 891
Title: Advanced Seminar I
Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICATION:

Adyanced seminar courses should be offered for the following reasons: (i) advanced seminars enhance the existing program offerings; (ii) advanced seminars provide the program with the opportunity to advantageously utilise visitors and new faculty with expertise in a particular area not normally covered in the present ourriculum and an area which is doubtful for permanent inclusion as part of the curriculum; and (iii) advanced seminars allow some latitude for course development.

RESOURCES:

Which faculty member will normally teach the course: Faculty
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	nate:

SIMON FRASER UNIVERSITY
New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: COMPUTING SCIENCE
Course Number: CMPT 892
Title: Advanced Seminar II
Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:

Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUST IFICAT ION:

Advanced seminar courses should be offered for the following reasons: (i) advanced seminars enhance the existing program offerings; (ii) duvanced seminars provide the program with the opportunity to advantageously utilise visitors and new faculty with expertise in a particular area not normally covered in the present curriculum and an area which is doubtful for permanent inclusion as part of the curriculum; and (iii) advanced seminars allow some latitude for course development.

RESOURCES:
Which faculty member will normally teach the course:
Faculty
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3 .

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

SIMON FRASER UNIVERSITY
New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: COMPUTING SCIENCE Course Number: CMPT 893

Title: Advanced Seminar III

Description: To be posted one semester prior to being offered.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 3-10 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICATION:

Advanced seminar courses should be offered for the following reasons: (ii) advanced seminars enhance the existing program offerings; (ii) advanced seminars provide the program with the opportunity to advantageously utilise visitors and new faculty with expertise in a particular area not normally covered in the present curriculum and an area. which is doubtful for permanent inclusion as part of the curriculum; and (iii) advanced seminars allow some latitude for course development.

RESOURCES:
Which faculty member will normally teach the course:
Faculty
What are the budgetary implications of mounting the course:
a) $1 / 4$ faculty person per offering
b) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

New Graduate Course Proposal Form

CALENDAR INFORMAT ION:

Department: COMPUTING SCIENCE
Course Number: CMPT 894

Title: Directed Reading I
Description: A reading course arranged between student and faculty.
Credit Hours: 3 Vector: (3-0-0) Prerequisite(s) if any: none
\qquad
\qquad

ENROLMENT AND SCHEDULING:
Estimated Enrolment: 1 When will course first be offered: as needed iuw often will course be offered: as necessary.

JUSTIFICATION:

Subject to student demand and faculty availablily (visitors included) directed reading courses enhance a student's program.

RESOURCES:
Which faculty member will normally teach the course: Faculty
What are the budgetary implications of mounting the course:
a) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
Senate:	Date:	

New Graduate Course Proposal Form

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 895
Title: Directed Reading II
Description: A reading course arranged between student and faculty.
Credit Hours: 3 Vector: (3-0-0). Prerequisite(s) if any: none

ENROLMENT AND SCHEDULING:

Estimated Enrolment: 1 When will course first be offered: as needed How often will course be offered: as necessary.

JUSTIFICAT ION:
Subject to student demand and faculty availablily (visitors included) directed reading courses enhance a student's program.

RESOURCES:
Which faculty member will normally teach the course: Faculty
What are the budgetary implications of mounting the course:
a) computing costs - see attachment \#2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved:	Departmental Graduate Studies Committee: yes	Date: $29 / 4 / 77$
	Faculty Graduate Studies Committee: yes	Date: $19 / 5 / 77$
	Faculty:	Date:
	Senate Graduate Studies Committee:	Date:
	Senate:	Date:

New Graduate Course Proposal Form

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form

CALENDAR INFORMATION:

Department: COMPUTING SCIENCE
Course Number: CMPT 899

Title: Ph. D. Thesis

Description: Thesis.
Credit Hours: $0 \quad$ Vector: $(\theta-0) \quad$ Prerequisite $s)$ if any: none

ENROLMENT AND SCHEDULING:
Estimated Enrolment: When will course first bc offered: as needed How often will course be offered: as necessary.
\qquad

JUST IFICATION:

Required for Degree.

RESOURCES :
Which faculty member will normally teach the course:
Faculty

What are the budgetary implications of mounting the course:
a) computing costs - see attachment 非2 cover memo

Are there sufficient Library resources (append details): see Attachment Number 3.

Approved: Departmental Graduate Studies Committee: yes Date: 29/4/77
Faculty Graduate Studies Committee: yes Date: 19/5/77
Faculty:
Date:

Senate Graduate Studies Committee: Date:
Senate:
Date:

Analysis of the Computing Science Collections in Support of the Proposed

Masters and Ph.D. Programs in Computing Science

Prepared by
Maurice Deutsch

Simon Fraser University Library September 1977

Abstract

This report describes the Library's monograph and journal collections ir support of graduate studies in the computing science Department as set forth in the 'Computing Science Graduate Studios Proposal'. by the Graduate Studies Comittee. Computing Science Program, May 4, 1977.

It provides essentially a summary of current acquisition practices and an overall view of the Library's bock and journal collectiors in computing science. It is to be regarded as a supplement to the 'Survey of the Literature holdings of Simon praser University lirary in Computing Science', written by Dan Bruce, Physical Sciences Librarian, January 1971 (copy enclosed with this report) which provides an analysis of the computing science collections.

The areas of study in the Proposal may be outlined as follows:

163 Theoretical Computing Science including analysis of computational problems and algoritho design.
2. Artificial Intelligence including heuristic problem solving, pattern recognition, image processing, game playing and decision making.
3. Programming Languages including compiler theory and language design.
4. Programming systems including simulation, modelling, queuing, operating and database systems.
5. Computer Design ard Organization including computer architecture, switching theory and logical design.
6. Advanced Applications, such as, optimization models, linear and ronlinear programming; biomedical computing. including thecretical models of neural networks and physiological control systems; computer mapping and computer cartography; and computer graphics.
7. Special Tcpics, such as, symbolic and algebraic manipulation; adaptive systems, biological mechanisms of irformation processing, feed back control: social implications of computer technology; creative programming environments which facilitate and enhance tho design process in other areas.

Supporting current work in the computing Science Department and work by many individuals who are irvolved with theoretical. applied, and methodological aspects of computers and computing in the sciences, humanities, and social sciences is a core book collection of more than 3,400 volumes. This book collection consists of dictionaries, encyclopedias, textbooks, dissertations, reviews, treatises, handbooks, manuals, guides, primers, proceedings of conferences, congresses, symposia, government publications, unpublished technical and research reports, and data compilations in such areas as computing science, programming and programing languages, debugging, compilers, systems analysis and design, computer modelling and simulation, operating systems, computers and minicomputers and their applications, networks, information science, data processing, and so forth.

Rfalizing the importance and immediate impact of computers and computer applications, the science librarians began, early in the history of SPU before the creation of the Computing Science Department, to build a strong core collection for undergraduates, graduates, and faculty ir computing science, programming, and related areas. This collection also provided support to the handful of computing science and programing courses taught by the Mathematics Department.

The computing science collection as a whole is by no means easy to define because of the development of such profoundly diverse and specialized applications of computers in so many different areas. The rapid expansion of computer applications, the birth of new programming languages and the development of new progaming techniques is reflected in an expansive growth of both book and fournal publications. We are currently attempting to collect materials which deal with computers and computer applications and which have some useful value to teaching and research at Spu.

```
    Major acquisitions is taking place in the following
areas:
    Adaptive Control Systems
    Algorithms
    Artificial Intelligence
    Automata
    Automation
    Biological control Systems
    Bionics
    Roolean Algebra
    Calculus of Operations
    Compiling and Compilers
    Computer Architecture
    Computer Design
    computer Graphics;
    Computer Industry
    Computer Music
    Computers including minicomputers, microcomputers, and
    microprocessors
Computers and Civilization
Computing Science
control Theory
Critical Path Analysis
Cybernerics
Debugging
Decision Haking - Mathematical models
Digital Computer Simulation
Discrete Time Systems
Dynamic Programming
Electronic Data Processing
Experimental Design
Feedback control
Flow Charts
Flowgraphs
Games of Strategy (Mathematics)
Human Engineering
Human Information Processing
Tnformation Science
Information Storage and Retrieval Systems
Information Theory
Linear Algebra
Linear proramming
Linguistics - Data Processing
Logical Desigr:
Mathematical Models
Machine Theory
Machine Translating
```

```
Man-Machines Systems
Management Games
Management Information Systems
Mathematical Linguistic
mathematical optimization
Network Analysis (Planning)
Nonlinear Theories
Numerical Aralysis
Neural Transmission
Nonlinear proramming
Nonparametric Statistics
Operations Research
Optical Data processing
optical PatternRecognition
Pattern Perception
Problem Solving
Programming (Flectronic Computers)
programming languages (Electronic Computers)
Progamming (Mathematics)
Queuing Theory
Sequential Analysis
Simulation
Statistical Decision
Switching Theory
System analysis
Time Sharing
```

We are not purchasing detailed technical material in such areas as electronic and electrical engineering, hardware construction materials technology. circuit construction and assembly and we are not collecting manuals associated with operating systess (for example the IBM series) which need frequent updating and shonld be kept at or as close as possible to the computer site.

The 1976 American Book Publishing Record fa listing of about 35,000 books which were published in the onited states or distributed in the united states by agents of foreigr publishers) was used as a yardstick to measure the degree of completeness of selection on the basis of what was available for the entire publishing year. The number of titles purchased in computing science for 1976 copyrighted books are as follows:

```Computing scierce, programming, operating systems, etc.136
```

Mathematical aspects 68
Technological aspects 57
rusiress aspects 53
Total 314

The purchase of 314 titles represents about 90% of the available titles (330) published for that year, the remainder representing highly technical works in electrical engineering and popular tratments of computers.

It can be seen from $F i g$. 1 that this core collection as a whole has increased by 32% between April 1974 through August 1977; this is an increase in 842 volumes. The specific section dealing with computing science. computers, operating systems, compilers, computer simulation, programming and programming languages has increased by 47% (386 volumes). In my view the bcok and monograph collection can now provide excellent support for the proposed graduate program in Computing Science:

A list of 119 journals, conference proceedings, arnuals, and indexes and abstracts for which there are standing oruers is included with this report.

Of 79 desirable periodicals (list is included with this report) submitted with the proposal, 58 or 73% are held by the Library. Since the Library must cancel the equivalent dollar value of current journals to subscribe to new journals, 895 dollars wust be found outside the library's serials budget to purchase the 19 journals and 2 indexes recommended by the Computing Science Department. This practice of purchasing new jourrals in exchange for cancelling already existing subscriptions as a technique for weeding 'little used material' and attempting to 'contain' the journals budget not only hampers the development and growth of the journals collection, but fast reaches a point of diminishing returns after which nothing is cancelled and nothing is ordered.

I strongly suggest that, in view of current practice, the computing Science Department in conjunction with the Science librariars decide on any additional journal titles and that a request for funds to initiate subscriptions be included with the proposal since no real future commitment for journal acquisitions can be made at this time. I am including with this report a list of additional recommended purchases consisting of 42 journals at about 1500 dollars, 10 annuals at about 250 dollars, and one index at 108 dollars, a total of about 1858 dollars worth of subscriptions. Many of these journals should be ordered to support currert undergraduate teaching and research particularly in the applications areas. Three to five years of backfilos of two of the indexes, Computers and Control abstracts, and Computer and Information systems, should be purchased to support literature searching.

I also recommend the appointment of a library
Represertative from the computing Science faculty to act
as a liason between the Department and the Library during at least the initial stages of program development. This individual can provide a reliable, familiar channel through wich requests for materials would be forwarded to the library, and keep the library informed of new course proposals, curriculum changes, and so forth.

Fig．1．Core Computing Science Book Collection

ibrary of Congress Ca	－Number Apr 74		In	\％
Computers in the Business fnvironment \＃AF5548	258	322	64	25
Computers in Education and Teaching	253	317	64	25
Systems Theory，cybernetics，pattern Recognition，Artificial Intelligence． Heuristic Programming．Machine Inteliig gence，Information Theory －0295－0 375	174	222	48	28
Computing Science，Computers，Computer Simulation．programming and Programming Lanquages，compilers，operating Systems．Algorithyms，Data Structures Microprogramming．Flowcharting， Debugging \＃0А7ムー介А76	821	1207	386	47
Ccmbinatorics，Approximation，Relaxation Method，Linear and Nonlinear programminge Numerical Analysis \＃QA164－QA165；QA218－0A225； －QA264－QA265：QA281－QA299＇	315	377	62	20
Automation Theory Boolean Algebra， Automata，Game Theory，Decision Making \＃QA267－QA272	77	113	36	47
Systems Analysis Control Systems 	166	220	54	33
Systems，Operations Research， linnoar and Nonlinear Programming Network Analysis Queutng，Decision Processes． Games and Strategy \＃T57	185	215	30	16
Computers－Hardware，Design，Networks \＃TK7885－TK7895	109	124	15	14
Library Automation \＃2678	63	90	27	43
Information Science ＊ 2 ヶ99	173	229	56	32
TOTALS	594	3436	842	32

```
Geccmmend,ations
=ニ=ニ=====-======
Prices quoted for recommended serials were obtained from
the 1975-1976, 16th edition of 0lrich's International
periodicals Directory and should be regarded as
conservative in view of the current inflationary trends
in publishing.
Fecommendations by the Library - Journals
====:====================================-
A C M SIGTOMS: transactions on mathematical software ( $ 40.00
A S C FORUM $ 18.00
    American Society for Cybernetics
AMERICAN JOURNAI OF COMPUTATIONAL LINGUISTICS $ 25.00
    Association for computational Linguistics
ASSOCIATION FOR LITERARY AND LINGUISTIC COMPUTING $ 10.00
    BOLIFTIN
    Association fcr Literary and Linguistic Computing
AUTOMATIC CONTROL THEORY AND APPLICATIONS $ 27.00
    Acta press
COMPUTER AIDED DESIGN $ 52.00
    I P C Scierce and Technology press
COMPUTER APPIICATIONS NEYSLETTER $ 45.00
    Gcrdon and Breach
COMPUTEF DFCISIONS: information systens, automated $ 24.00
    processing, problem solving
    Hayden Publishing
COMPUTEF DIGEST
    North Americar Publishing
COMPUTER EDUCATION; a jonrnal for teachers na
    interested in computers and computing
    North Staffordshire rolytechnic
COMPUTER PGOGRAMS IN SCIENCE AND TECHNOLOGY $ 95.00
    Scifrce Associatfs International
```

COMPUTERS AND CHEMISTRY $\$ 60.00$Pergamon Press
COMPOTERS AND DATABASES: an international $\$ 50.00$
fournal
perganon press
COMPOTERS AND EDOCATION: an international $\$ 50.00$
journal Perqamon press
COMPUTERS AND GEOSCIENCE; an international $\$ 60.00$journalPergamon press
COMPUTERS AND GRAPHICS $\$ 60.00$
Perqamon press
COMPUTFRS AND HUMAN CONCERA $\$ 60.00$
pergamon press
COMPUTERS AND AARAGEAENT: an international $\$ 60.00$
journal
perganon press
Comfuters and mathfatics gith applications $\$ 60.00$
Pfrgamon press
COMPUTERS AND medicine $\$ 5.00$
American Medical Association
compoters and medieval data processing freoUniversite de montreal
COMPUTERS AND OPRRATIOXS RESEARCH $\$ 50.00$COMPUTERS AND PHYSICS$\$ 60.00$Pergamon Press
COMPUTERS AND URBAN SOCIETY $\$ 60.00$Pergamon Press
COMPOTING NEWSLETTER FOR INSTRUCTORS OF DATA $\$ 11.00$
PROCESSINGCEnter for Cybernetics Systems Synergism
CONTROL AND CYBERNETICS 2150Polska Akademia Nauk. Institute for organization,Management and Control Science
DATA'BASE$\$ 3.50$
Association for Computing Machinery
DATA, COMMUNICATIONS $\$ 4.00$
McGraw-Hill
DATA: PPOCESSING POR EDUCATION $\$ 40.00$
North Americar publishing
DATA PROCESSING MANAGEMENT ASSOCIATION MAGAZINE naData r rocessing Management Association of Toronto
DATABASE JOURNAL $\$ 40.00$A. P. Publications Ltd.
DIGITAL PROCESSES: an international journal on the $\$ 50.00$theory and design of digital systemsDelta publishing
E D P PERFORMANCE REVIEN: monthly report on $\$ 36.00$computer performance improvementApplied computer Research
JOURNAL OF CLINICAL COMPUTING $\$ 16.00$
Jourral of Clinical Computing Inc.
MEDICAL AND BIOLOGICAL ENGINEERING AND COAPUTING: $\$ 80.00$Journal of the International Federation for Medicaland Biological Engineering.Peregrinus
OPERATING SYSTEMS REVIEH $\$ 5.00$Asscciation for Computing Machinery
S I G C U E BULLETIN $\$ 6.00$Association for Computing Machinery. SpecialInterest Group on Computer Uses in Education.
STATISTICAL COMpOTATION AND SImULATION $\$ 75.00$Gordon and Breach
THEORETICAL COMPUTER SCIENCE $\$ 50.00$North Holland Publishing1
UNTVERSITY OF TORONTO. DEPARTMENT OF COMPOTER free
SCIFNCE. TECHNICAL REPORTS.onivorsity of Toronto
WORD PROCESSING WORLD: the magazine of automated

$\$ 4.00$
business communications
Geyer-mcallister
WORDS
naInternational word Processing Association
*** Fstimated total: 42 journals
Pecommendations by the Library - Annuals and Irregularly Issued Serials
$\$ 1431.50$
AMERICAN SOCIETY FOR CYBERNETICS. PROCEEDINGS OF varies THE ANNUAL AEETING Spartan Books
ANNUAL REVIEH IN AOTOMATIC PROGRAMMING varies
Pergamon press
automatic programming information center studies varies
in data processing Academic Press
ALIPORNIA. ONIVERSITY OF CALIPORNIA varies poblications in automatic compotation University of California press
COMPUTER APPLICATIONS IN THE NATURAL AND varies SOCIAL SCIENCES The University, Nottingham
COMPUTER PROGRAM DIRECTORY $\$ 25.00$
Association of Computing Nachinery
H. ROWAN GAITHER LECTURES IN SYSTEMS SCIRNCE varies University of California fress
harvard university. Computation laboratory. varies
ANNALSHarvard University press
International tracts in computer science varies AND TECHNOLOGY AND THEIR APPLICATION pergamon press
machine intelligence horkshop variesAmerican Elsevier
Fstimated total: 10 annuals $\$ 250.00$
Recommendations by the Library - Indexes

COMPUTER AND CONTROL ABSTRACTS $\$ 108.00$
Institution cf Electrical Engineers
Estimated total: 1 index$\$ 108.00$
Pecommendations by the Computing Science Department - Journals

AIGORYTMY/ALGORITHMS na
Instytut Maszyn Matematycznych
automatic CONTROL AND COMPUTER SCIEMCES. English $\$ 145.00$ Allerton press
ADTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS $\$ 145.00$
English translation of: Nauchno-Tekhnicheskaya Informatsiya Allerton press
CALCOLOAssociazione Italiana per Il Calcolo Automatico-AICACANADIAN CONTROLS AND INSTRUMENTATION$\$ 12.00$
$\$ 10.00$
Maclean-Hunter
CANADIAN ELECTRONICS ENGINEERING $\$ 10.00$Maclean-hunter
COMPUTER AIDED DESIGN $\$ 52.00$I P C Scierce and Technology
COMPUTERS AND STRIUCTURES $\$ 100.00$pergamon press
COMPUTFRWORLD: newsueekly for the computer comanity $\$ 12.00$Computerworld Inc.
CONTROL AND INSTRUMENTATION $\$ 40.00$
Mcrgan Grampian Itd.
ECONOMIC COMPUTATION AND ECOMOMIC CYBERNETICS STUDIES na
AND RESEARCH
The Center of Economic Computation and EconomicCybernetics, Bucharest, Romania
ELECTRONICS AND COMMUNICATIONS IN JAPAN: SCripta 8.00
electronica Japonica. English translaticn of:
Institute of Electronics and Communication Eingineers
of Japan. Transactions.
Scripta publishing
ELEKTRONISCHE RECHENANLAGEN: Theorie, Technik und DM 108
Anwendung der computer
R. Oldenbourg
INFORMATION PROCFSSING IN JAPAN na
Information processing Society of japan
INTERNATIONAL ASSOCIATION POR ANALOG COMPUTATION. PR 800
PROCEEDINGS: MODELLING AND COMPUTER SIMOLATION
International Associatin for analog computation
INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING $\quad \$ 35.00$
Appliea Science publishers Itd.
JOURNAL OF COMPUTER AND SYSTEM SCIENCES $\quad \$ 77.00$

SOPTWARE: PRACTICE AND EXPERIENCE
John wiley
SOFTWAFE GORLD; an international journal of computer
programs and packages
A. P. Publications
*** Fstimated total: 19 journals
$\$ 714.00$
Recommendations by the computing Science Department -
Indexes and Abstracts

PEHAVIORAL SCIENCE $\$ 21.00$
university of Louisville
COMPUTER AND INFORMATION SYSTEMS; an abstract journal $\$ 160.00$
pertaining to the theory, design, fabrication and
application of computer and information systems
Cambridge Scientific Abstracts
Estimated total: 2 indexes $\$ 181.00$
**
$\$ 2684.50$

```
                        %
                    SUPPLEMENT TO
```

Analysis of the Computing Science Collections in Support of the Proposed

Masters and Ph.D. Programs in Computing Science

Prepared by
Maurice Deutsch

Simon Fraser University Library
September 1977

```
The intent of this report supplement is to update the estimeted costs of journal recommendstions.
Pricas quoted were obtained from Ulrich's International Periodicals Directory, 17th edition, 1977-78. Prices in parenthesis represent the velues supplicd in the original report. All prices are In U.8. dollare.
Recommendations by the Computing Science Department, considered essential:
\begin{tabular}{lll} 
Journals & \(\$ 1,397\) & \((\$ 714)\) \\
Indemes abstracts & \(\$ 1385\) & \((\$ 181)\) \\
Sub totel 1 & \(\$ 1,782\) & \((\$ 895)\)
\end{tabular}
Recommended by the Library, considered ideal but not essential:
\begin{tabular}{lll} 
Journals & \(\$ 1,634\) & \((\$ 1,431.50)\) \\
Annuals, etc. & \(\$ 250\) & \((\$ 250)\) \\
Inderes & Abstracts & \(\$ 108\) \\
Sub total 2 & \((\$ 108)\) \\
Sub total 3 (excluding & \(\$ 1,992\) & \((\$ 1,789.50)\) \\
Pergamon series of & & \((\$ 1,389.50)\) \\
Computers and...) & &
\end{tabular}
Grand total (sub total \(1+\$ 3,244\) ( \(\$ 2,284.50\) ) sub total 3)
Overall increase in cost Percentage " " 1 42\%
Estimated exchange 12-20\%
Backfiles for all the journals and indexes recommended by the Computing Science Department may be estimated at the rate of about \(\$ 1800\) per year.
Overall start-up cost: \(\quad \$ 3,244\)
\$1,800
\$5,044
```


ATTACHMENT \#3

TENTATIVE BUDGET PROPOSAL

In addition to the regular Computing Science Department budget, revenues are expected in the form of research grants which can be utilised by individual faculty members to support qualified graduate students.

Operating costs are not expected to increase significantly. The major expense (new faculty excluded), computer usage, finds the Computing Science Department favourably equiped. With the addition of laboratory facilities as of 1978, Computing Science can support many computing requirements from within the Department. The Planning Budget shown below offers recurring and non-recurring costs including the expected computer machine time increase due to the graduate program. A modest increase in office expenses is anticipated especially for the reproduction of documents, technical reports, and soforth.

SALARIES

Faculty
T.A.'s
sect. ε clerical
SUBTOTAL - Direct Salaries
Eenefits - 13\%
total Salaries e benefits
OPERATING EXPENSES
Office Expenses
Faculty Travel
Computer Materials
Library - Journals
total - direct operating
total - Sal e operating
Service Dept Overhead 15\%
total recurring costs
1000.00
-
4000.00
900.00
5900.00
22900.00
3400.00
26300.00

YEAR1
12000.00
5000.00
17000.00
17000.00
1000.00
4000.00
900.00
5900.00
22900.00
26300.00

NCN $\operatorname{mecurring~COSTS}$
Library books, mono, backfiles 2000.00 Recruiting
Equipment
Hoving Allowance
Space Alterations
TOTAL NCN RECURRING COSTS
TOTAL ADDITIONAL COSTS
28300.00

Less - Student fees
NET ADDITIONAL COSTS
5000.00
23300.00

Computer Machine Time
20000.00

YEAR2
52000.00
14500.00
13300.00
79800.00
8500.00
88300.00
yEAR3
63500.00 31800.00 13300.00 108600.00 10000.00 118600.00

4700.00	5800.00
700.00	900.00
10000.00	18000.00
900.00	900.00
16300.00	25600.00
104600.00	144200.00
15700.00	21600.00
120300.00	165800.00

2100.00	-
3900.00	1000.00
1000.00	-
4500.00	1100.00
11500.00	-
131800.00	2100.00
10000.00	167900.00
121800.00	15000.00
	152900.00

90000.00

