To.....Senate.

Subiect. . M.Sc. :. Program in Statistict.

From... Senate Committee on Academic Planning Senate Graduate Studies Committe

Date... Apr.i! . 18, , 1984

The proposal for an M.Sc. Program in Statistics was considered and approved by the Senate Committee on Academic Planning at its meeting of April 4, 1984 and by the Senate Graduate Studies Comittee at its meeting of April $16,1984$.

In discussion, it was noted that initially the proposed program could be mounted with existing faculty from the Department of Mathematics and Statistics. In the long term, with growth in enrollment, additional resources would be required.

## MOTION:

> "That Senate approve and recommend approval to the Board of Governors, as set forth in S.84-34, the proposed M.Sc. Program in Statistics."

WJW/gg

SIMON FRASER UNIVERSITY

MEMORANDUM

Senate Committee on Academic Planning
() $\dot{A}$
for
From John M. Webster, Dean
Graduate Studies

Date.
March 28, 1984

The proposed M. Sc. Programme in Statistics is attached for your consideration. It was approved by the Assessment committee for new Graduate programmes on March 26, 1984, and strongly endorsed, particularly in light of the positive comments of the external reviewers.

The proposal is scheduled for consideration by the Senate Committee on Graduate Studies at its meeting April 16, 1984.

#  <br> hismoranduk 


 $\qquad$
...... Departinent. of. Mathematics

Date. . . . . 4. Aprị 1984

In response to your memorandum of 29 March, I would like to make the following comments:

1. The program can be mounted initially without new faculty. For the past several years we have offered, through our visitors, sufficiently many courses at the graduate level to permit students to meet the requirements of the new program. In addition, in the early stages, while enrolments are low, we will be able to provide reading courses where necessary. The consulting service has been manned voluntarily in the past; we will continue to do this for the short term.

Eventually, however, and particularly if enrolments match our expectations we will not be able to continue in this way. A reading course for six to ten graduate students is impractical. Our visitors must not be regarded as simply part of our teaching program. Our NSERC funds may not always be sufficient to provide enough visitors. Sabbaticals might place too great a strain on the system. Finally, if the consulting service is as successful here as it is elsewhere, the burden of administering it and supervising the students will necessitate some teaching relief.

We should point out that a position in statistics was the top hiring priority in the Faculty of Science this year, and that the Mathematics Department is generally considered to be understaffed.
2. We believe our graduates will have adequate experience in statistical computing. Statistical computing will be an integral part of consulting as well as the courses STAT 803, 804 and 805. In addition, we have always encouraged our students to take numerical linear algebra courses, which are very relevant to statistical computing. We will continue to do so.

We believe the computing facilities at Simon Fraser are adequate to the task. They are certainly not comparable to those at Berkeley but we have a good supply of statistical packages.

In addition, we have easy access to computing facilities. We are confident that Simon Fraser will continually update the computing equipment.
3. As all thrcerevicwers indicate, the consulting scrvice is crucial to a useful applied Master's Degree in Statistics. The reviewers make various suggestions concerning the organization of such a service and we respond to these herc.

Professor MacNeill suggests we charge for the service. Eventually, we would like to do so, in cases where the consultee has research funds available. Initially, however, we must establish the service in the client's minds as a useful tool in their work. Furthermore we must recognize that, at Western, the largest sources of revenue of this type are grants given to medical researchers. We do not have a Medical School here.

Professor Brillinger wonders about credit for the consulting courses and payment to students participating. We believe payment to graduate students is the exception rather than the rule; if simon Fraser wishes to emulate Berkeley, and have the Faculty of Graduate Studies pay the students we could hardly object but it does not seem necessary. As to credit for the course, we elected the present route after discussions with the Registrar. Our suggested method is administratively convenient. The actual work content of the course can be evaluated by other institutions on the basis of the project and letters of recommendation from our faculty.

Professor Brillinger also wonders about Ph.D. students and students from other departments participating in the service. At Berkeley there is a separate department of Biostatistics and it is primarily these outside students who participate there. We do not expect many students here from outside the Mathematics Department to be interested or qualified but we will certainly accept any who are. We expect our Ph. D. students will participate in the service. There will not be many Ph.D. students and supervisors will have sufficient authority to persuade them to participate. Nowadays, every Ph.D. student in statistics seems to be anxious to do so.

Professors Kalbfleisch and MacNeill suggest application to NSERC for support for the consulting service. We will do so.
4. Replies to Professor MacNeill's further comments:

1) Experimental design and regression methods are covered at SFU in fourth year undergraduate courses. We will be using our authority over course selection to ensure that students without these subjects in their backgrounds make up the deficiencies.

Sample surveys form an area of statistical expertise rather different from the usual areas. At present none of our faculty have particular expertise in this area. Ideally we would like to mount a graduate course in sample surveys but our present proposal already taxes our resources to the limit. If and when further faculty are appointed we would mount a course in this area.

Statistical computing will definitely be an important part of participation in the consulting service.
2) These courses are quite peripheral and we do not have the resources to offer them. Occasionally, other departments (Economics for example) may offer courses in some of these areas. We would encourage our students to take them.
3) Projects may involve software development if the opportunity presents itself. Only time will tell.
4) We will do our best to expose students to computer graphics and database management. This will require consultation with computing science and the computing centre.
5) We have, in the past, accepted students from disciplines other than mathematics and statistics. We always require such students to make up the lacunae in their undergraduate backgrounds. Generally, they do this in a qualifying semester.


GACG/bcl

# SIMON FRASER UNIVERSITY <br> MEMORANDUM 

 ......Chairman . Mathẹmatic̣s.

Subjea. .STATISTICS .MSS. .PROGRRAMME

From. . . . Jọ̣n.M. M. Webster.
......As.s.oc.iatte .Vicee-Prespident.. Academic.
Dove. . . . . March. 29.9 th. . 198.4

The Assessment Committee for the Statistics MSC Programme approved the proposed programme at its meeting on Monday and recommended its consideration by the Senate Committee.

The following points were raised by the Assessment Committee and I suggest that you respond to these issues in a memorandum addressed to me:

1. Clarify whether or not the additional faculty resources are essential for the offering of the programme, and, if so, under what circumstances.
2. The adequacy of the computing component in the programme, and of the computing availability.
3. All the reviewers were concerned about the consulting service, and the format and centrality of consulting in the programme. You may wish to address this issue.
4. A response to each of the five items raised in Professor MacNeill's review would be helpful.

I look forward to receiving your reply at your earliest convenience.


JMW/ cb

1. Introduction. ..... 1
2. Proposal in UCBC Format (with Appendix A). ..... 2
3. Answers to questions posed in draft minutes of meeting of ..... 13 Wednesday, May 25, 1983 of Assessment Committee for New Graduate Programs. Copy of Dr. Webster's memo to G.A.C. Graham of 8/6/83.
4. Appendix I. Course Proposal Forms; memo from E.A. Weinstein. ..... 20
5. Appendix II. New Calendar Entry for Mathematics. ..... 43
6. Appendix III. Current C.V.'s for Eaves, Lockhart, Routledge, ..... 45Stephens, Villegas and Weldon. (Not included for Senate distribution)

This program is designed to provide an alternative training plan for Masters students in Statistics, working in the Mathematics Department at SFU. At present the students can take the degree by course work and thesis as in other branches of Mathematics. The statisticians at SFU feel that a very strong case can and should be made for training statisticians with more emphasis on course work and actual experience of data analysis through participation in a consulting service. This is in line with statistics programs at major universities throughout the world. At Simon Fraser University, the formal machinery for introducing such a program is already in place; the program explains how the suggested new M.Sc. program in statistics will fit in to the formal structure of SFU's Master degree and presses the need for such a program.

## MASTRR OF SCIENCB IN STATISTICS: PROJECT OPTION

I: General Information

1. Title of Program: Master of Science in Statistics: Project Option
2. Credential to be awarded to graduates: M.SC.
3. Department to offer program: Mathematics
4. Date of Senate Approval: ??
5. Schedule for inplementation: 1 September 1984

## II: Program Description

1. Objectives:
a) To expose graduate students in statistics to the practical nature of the discipline through participation in the departmental consulting service and preparation of a project.
b) To expose students to a broader range of statistical techniques by requiring (and providing) more coursework. This concentration on breadth of experience rather than depth in one area will be enhanced by the substitution of a project for the thesis.
2. Relationship of program to role and mission of university:

This program will better serve graduate students in statistics by providing them with a broader knowledge of statistics, more soundly based in practice. Better education is, of course, a basic mission of Simon fraser university. In addition, we hope the consulting service will enhance contacts between statisticians and researchers in other departments. This interdisciplinary effort should increase the research effectiveness of both groups.
3. Other similar programs in Statistics:
a) In British Columbia: none. For comparison sake, as of Summer 1983:

University of Victoria: Offers a program with a requirement of 30 semester hours of credit and a thesis or a comprehensive examination program. The thesis program requires 16 of the 30 semester hours be at the graduate level while the comprehensive examination program requires 24 of the 30 semester hours at the graduate level. Neither program has the consulting service requirement of this program. Very few students take either program in Statistics.

University of British Columbia: A thesis program with 24 semester hours of coursework of which at least 12 hours are at the graduate level. Consulting service experience is optional.
b) Outside of British Columbia: Proyrams requiring 25 to 30 sementer hours of coursework and a final examination are available at carleton, Toronto, Western Ontario, and York. Programs rerjuiring coursework and a "project" or "major project" or "paper" are available at McMaster, the University of Alberta, and Waterloo. At McMaster consulting service participation is required. The McMaster program is similar to our proposal.
4. Relationship of proposed program to those at the University of Victoria and the University of British Columbias

The program has two crucial differences from those at both other schools: first, we require more graduate coursework than any of the thesis programs - 20 semester hours as opposed to 16 or fewer; second, and most important, we are alone in requiring participation in the statistical Consulting service. The trade-off is that the project is less extensive than the thesis. This progran is therefore more suited to providing broad exposure to statistical techniques for students.
5. Curriculum:

We will be requiring 28 semester hours of coursework, at least 20 of which are at the graduate level with the remainder at the 400 -level or higher. In addition, students will be required to participate in the consulting service for two semesters. We propose to administer this consulting requirement by creating two courses; Statistical consulting $I$ and Statistical Consulting II. Treating consulting as coursework has these advantages: the students' transcripts will show that they have practical experience; the serious commitment of the statistics group to the importance of practical work will be demonstrated to the students, and formal supervision of the students' participation will be provided. Finally students will be required to subinit and defend a project. This would likely consist of the thorough analysis of a data set, generally one encountered in the consulting service, with a written report on the analysis.

More detailed course requirements are listed below:
a) Existing courses: We will be using

MATH 872-4 Probability I
MATH 873-4 Probability II
MATH 874-4 Probability: Selected Topics
as optional courses.
In ardition we propose to rename:

| MATH 875-4 | Statistics I as STAT 801-4 Mathematical Statistics |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MATH 876-4 | Statistics II as | STAT 802-4 | Multivariate Analysis |

The renaming serves two administrative purposes. It allows all statistics graduate courses to be numbered rationally and it permits
statistics courses to be listed together in the calendar.
We will be requiring STAT $801-4$ and STAT 802-4 as compulsory courses. In addition we will be using our existing undergraduate courses at the 400level as optional courses and, where thought necessary by a student's program advisor, as required background courses for graduate courses. We will also be using on occasion some graduate courses offered in other departments (for example Time Series courses in Economics or Experimental Design courses in Psychology).
b) New courses: (Course Proposal Forms attached in Appendix I)
i) Statistics Courses

| STAT 803-4 | Data Analysis |
| :--- | :--- |
| STAT $804-4$ | Time Series Analysis |
| STAT $805-4$ | Nonparametric Statistics and Discrete Data Analysis |
| MATH 871-4 | Applied Probability Models |

The courses STAT 803-4 and STAT 804-4 are computer oriented. In order to ensure that our students have at least a minimum exposure to computer methods we require students to take either STAT 803-4 or STAT 804-4 which are computer oriented. A course in numerical linear algebra is in the approval process and we intend to permit students to use this course, when it is approved as an alternative route to satisfying our minimum computing requirements. We expect our students will generally get much more exposure than this minimum through the project, the consulting service and other coursework.
ii) Statistical Consulting

| STAT 811-0 | Statistical Consulting I |
| :--- | :--- | :--- |
| STAT 812-0 | Statistical Consulting II |

These courses would both be required. They will be graded on a satisfactory/Unsatisfactory basis. The use of two course numbers is intended to make it easier for the Office of the Registrar to record two semesters of participation on a student's transcript.
8. Details of consultation with non-university agencies

Drs. Weldon, Routledge and Stephens have considerable contacts with government and industry; this comes about from consulting, from their official positions in Canadian Statistics and in Weldon's, case because he has just finished an NSERC Industrial fellowship under McMillan-Bloedel. Stephens is president of the Statistical Society of Canada and as such has contact with the Department of Energy, Mines and Resources, Statistics Canada, etc. It is very clear that such bodies recognize the ever present nead to keep statistios graduates up to date. Statistics Canada, for instance, have omphasized thelr approval of the University of Waterloo's co-op program, because it means that students get real experience with data, which is often of necessity

Contaminated or partly lost, etc. In industry also, the need is perceived for statisticians who can interact with others in the field and also with executlves and managers. Nevertheless, much education is still needed in Canadian industry to improve awareness of what can be done with better methodology.

## III. Noed for Program:

1a) The need for this program arises because we feel that statisticians need botter training at the Master's level. Because there are few Departments of Statistics in Canada (although this is changing), students entering Masters programs in Statistics at most Canadian universities usually have the B.Sc. in Mathematics. In their program they would have had at most three or four courses in Statistics, empared with the full program which a student in a Statistics Department would have taken. Students sometimes enter Statistics programs from other disciplines, for example, Psychology, Economics, Biological Sciences, etc; these are good backgrounds, and students from other subjects should be encouraged to study Statistics, since it leads to better applied scientists.
b) However, Statistics has now become a very vast field, and we want our students with a Masters degree to leave with a broad knowledge of this field. At present the course structure of the degree with the thesis is too limited; students take few courses, and so have no course work in wide areas of Statistics. They then write a thesis, which may or may not contain a research component (in our Department it usually does), but of necesalty this is in a limited topic. The typical student spends a great deal of time and energy on the thesis.
c) It cannot be over-emphasized that statisticians occupy a special role; according to the position they hold they interact with specialists in many other disciplines, and are looked to for practical guidance of how to analyze difficult data. The Masters degree is the level at which they should receive a broad applied training. This is what this program is intended to provide, by giving a wider range of course work, together with good practice at interacting with other scientists (or other workers with data) on their statistical problems. This will be done by having the students take part in our consulting service. We expect our students to learn a great deal from this part of their degree work. Such a Statistical consulting service has been set up by many universities in Canada and the United States. It is recognized as a Eirst class training ground for applied statisticians. (Incidentally, it also has many benefits to the University community at large).
d) Other universities also recognize this as a preferred method of training good applied statisticians, who will go out into industry, government, and research science positions of all kinds. For example, course work and no thesis is the accepted method of obtaining a Masters degree at the Oniversity of Toronto in Canada; Stanford University graduates at least twenty-five master's students in Statistics each year without a thesis; these students are statisticians who will not usually go on to do further academic research in Statistics. There are many other universities with similar programs.

It is also true that government (for example, Stats Canada), industry and business recognize that wide training plus practical experience with data is the necessity for a good statistician. The University of Waterloo in Canada enjoys a high reputation in these circles because it gives this type of training, even at the B.Sc. level.
e) Nowadays in Canada there is much stress laid, especially in high government circles, both federal and provincial, on the seed for the country to develop high technology, and efficiency in its production. We cannot hope to do this without producing first class applied mathematicians and statisticians. The great centers of high technology in the United States, for example, draw extensively on the faculty and graduate students of such Universities as Harvard, MIT, Stanford and Berkeley. Provincially, the government is encouraging Discovery Parks near the Universities and Institutes of Technology. It is the Universities' job to rise to this challenge and to lead the way in producing men and women with the training to make them leaders in this field in Canada. (At present, when we do produce first class people, there is a tendency for them to emigrate). The situation is circular; first class people will produce first class technology, and first class technology will require people with first class training. We are trying to look ahead and meet the need by providing this training.

## 2) Enrolment

a) Evidence of student interest: our recent M.Sc. students have expressed their feelings that they would have preferred a heavier course content, over as much of the field of statistics as possible, rather than fewer courses with concentration in a thesis. On a wider scale, students (or graduates, a little later on) often express similar sentiments. There is, in fact, a continuing dialogue in the profession on how statisticians should be educated, with a broad consensus on the importance of applications, computermethods, and practical consulting.
b \& c) Present enrolments in M.Sc. programs in Statistics amount to roughly 4 new students per year. Initially this is expected to continue eventually rising to perhaps 10 per year. Since the program requires approximately two years to complete the total increase in enrollment will be 12 FTE's.

Please refer also to page 12 below titled Enrollment in New Courses.
d) Growth limits: Growth is limited primarily by avallability of faculty to supervise the consulting service. It seems that an upper limit of 12 students per year ( or roughly 24 enrolled at any one time) is reasonable here. The limit is simply calculated as 4 students per faculty member at any one time; if we obtain new faculty this limit would rise.

We project a minimum enrolment of 10 students.
3) Types of Jobs for which graduates of this program will be aitable.
a) Statistics Canada, Department of Energy, Mines and Resources, and other
government agencies.
b) Corresponding Provincial Agencies.
c) Industrial jobs involving all levels of statistical analysis, e.g. managerial (sales, forecasting, trends, etc.) or related to field work - enviconmental, forestry, geostatistics, etc.
d) Medical Research Centres.
e) Data gathering centres such as the Cancer Control Agency of B.C.
2) Pharmaceutical companies (drug testing is a major source of employment of statisticians)
g) The teaching profession at all levels.
4) Placements of our graduates over past three years.
a) 8pinelli - Cancer Control Agency
b) Butchinson - B.C. Tel., marketing
c) Holguin - Not known, now in Denmark
d) Byrd - Computing Centre at UBC: then in marketing in Ontario
e) Janicot - Research division, French Army
\&) McLaren, Mah - to Ph.D. program
g) Note that several students are doing an M.Sc. while working - e.g. Chung in B.C. Bystems Analysis.
IV. Present and Projected Resources

1) Administrative Personnel: No new administrative personnel will be required.
2) Faculty:
(1) To cover Stat 803, 804, 805 and Math 871 to be offered on a rotating basis (each course once every two years) we need $2 / 3$ of a faculty member. In 83-84 we will be offering special topics versions of Math 871 and stat 804. Initially we would hope to be able to start the program without a new faculty member by offering some reading courses. We have written our budget request on the basis of one faculty appointment in the Fall of 1984, at the Assistant Professor level.
(1i) The consulting courses can be mounted initially without any now faculty. In the long run, however, they will probably require 1 faculty member. We are not presently asking for faculty for this purpose. Our present consulting ervice is manned voluntarily by statistics faculty who get no
formal credit; this situation is unlike that at most other universities and cannot be expected to continue indefinitely.
3) Library resources: No new resources necded. See the memo from E.A. Weinstein at the end of Appendix 1.
4) Capital Costs:
a) Office space: We will eventually need office space for 2 new faculty members and 12 new graduate students.
b) Computing costs: There will be no direct need for new computer services. However, the 2 new faculty members and 12 new graduate students would use the computer facilities in their courses, research and the consulting service. This probably represents only a small increase in total Mathematics Department computer usage.
5) Anticipated external funds:
a) for teaching: none.
b) for research: the 2 faculty members will be expected to have NSERC grants as usual. See below.

NSERC grants for present statistics faculty for 1984-85:
NAME AMOUNT OF GRANT

Dr. D. Eaves
Dr. R. Lockhart
Dr. R. Routledge
Dr. M. Stephens (1983-84)
(1984-85 - in process)
Prof. C. Villegas
$\$ 4,295.00$
\$ 4,295.00
$\$ 14,500.00$
$\$ 19,381.00$

Dr. K.L. Weldon
$\$ 12,248.00$
\$ $5,777.00$

## SIMON FRASER ONIVERSITY

## EAROLLIMEATT IN NTO COURSES

M.SC. IN STATISTICS: PROJECT OPPION

| Year | Credit Units of <br> New Courses | Annual FTE <br> Enrollments in <br> Program | Annual FTE <br> Enrollment in <br> New courses |
| :---: | :---: | :---: | :---: |
| $1984-85$ | 8 | 4 | 2.3 |
| $1986-86$ | 8 | 8 | 4.6 |

NOTE: The program normally lasts two years. A full time load is therefore credit hours per year. The column Annual FTE Enrollments in New Courses is therefore calculated as (credit units of new courses / 14) $x$ Annual FTE Enrollments in Proyram. This calculation is based on Sections A-1, A-2, B-1, B-2 and B-3 of New and Emergent Programs: Budget Submission Guidelines.

The figures presented here are based on a continuation of present enrollment levels of roughly four new students per year. We hope enrollments will rise reasonably quickly to roughly 10 new students per year but have not included any such increase here.

Answers to Questions Posed in Draft Minutes of Meeting of Wernesday, May 25 , 1983 of Assessment Committee for new Graduate Programs and Memo of Dr. Webster to Dr. Graham of $8 / 6 / 83$.

NOTE: FOr reference a copy of Dr. Webster's mems follows these questions and answers.

## 1 Questions:

(a) The proposed programme should be consistent in using the word 'project' rather than 'non-thesis'.
(f) Identify more clearly the resources needed for offering the proposed new courses; how frequently are these courses to be offered?
(g) The proposed programme should be rewritten and repackaged in a style appropriate for presentation to Universities Council. In this forin it will also be forwarded for external assessment.
(i) The need (and supporting data) for a more developed rationale about the demand for such a programme? What is the manpower projection for such a programme?
(m) Are any additional computing resources needed and if so when might they be needed, the cost and who is going to pay?

Also Points 2,3,4,5,9,10 of Dr. Webster's memo.
Reply: See proposal attached in UCBC format.

## 2 Questions:

(b) It is not clearly stated whether or not the project is to be formally defended and lodged in the Library.
(c) Does the project carry any credit hour value?

Also point ${ }^{6} 6$ of Dr. Webster's memo.

Reply: Simon Fraser University general regulations (See 1983-1984 Calendar page 213 \#1.7.2.; page 214 \#1.9.1. and page 216 \#1.10.6.) provide three acceptable options for Masters degrees: a thesis, two extended essays, or a project. Projects are less extensive than a thesis but are subject to the same general regulations. They must be examined as a thesis would be, supervised as a thesis would be, and lodged in the library as a thesis would be. We see our projects as not very different in style and scope from those for which we have served as external examiners in the Department of Economics. The general outline of our project option is similar to theirs with the exception of consulting. The project does not carry any credit hour value.

The project itself would generally consist of the thorough analysis of some data set, generally one encountered through the consulting service,
together with a written report on the analysis.

## 3 Questions:

(d) Is the M.Sc. degree programme with project option designed so as to allow direct entry into a Ph.D. degree?
(e) If the student wishes to pursue a Ph. D. degree following the 'project M.Sc.', is the student required to do any further course work?
(0) How may the better than average student make the transition to a broad-based research $\mathrm{Ph} . \mathrm{D}$. degree without completing a regular Master's research degree?

Point \#7 in Dr. Wehster's memo.
Reply: Students who have completed our M.Sc. degree will be well prepared to begin a Ph.D. program in Statistics either at Simon Fraser or elsewhere. Those students seeking a theoretical Ph.D. would probably need to do coursework in Probability Theory and Real Analysis.

Students proceeding to a Ph.D. at Simon Fraser would certainly need to do extra coursework in Analysis and Probability to prepare them for departmental comprehensive examinations.

The reference in (o) above to "a regular Master's research degree" is not entirely relevant to the Department of Mathematics since in some cases Master's theses in this department presently contain little or no original research.

## 4 Questions:

(h) How many students do they plan to admit? What is the impact of this type of programme on the rest of the department and the relationship of the new programme with existing programmes.

Point \#8 of Dr. Webster's memo.

Reply: Our projected enrolment initially is: 5 students per year. Refer to section III of the UCBC proposal.

The program will have no effect on the non-statistics part of the department except in so far as it increases enrolment in numerical analysis courses. We expect virtually all of our new M.Sc. students in statistics will pursue the project option. All our present students have expressed enthusiasm for the concept. The high enrolment in the very practically oricnted program at the University of Waterlo indicates the general popularity of such approaches.

5 Questions:
(j) Reguest additional information about the programmes at other universities and whether or nor these institutions are fulfilling current needs.

Reply: Please refer to section II. 3 and section III. 2 of the UCBC proposal.
(k) Request additional information about the current statistical consulting service the Department is presently doing. Explain the relationship of this service to the two new consulting courses.
(1) Give an enlarged course description for the consulting courses.
(s) What is the difference between the two consulting courses?
(t) Could the consulting courses be renamed 'internship' courses?

Point ${ }^{11}$ in Dr. Webster's memo.
Reply: The Mathematics Departinent presently offers a free statistical consulting service staffed by Statistics faculty. It is available to faculty and graduate students throughout Simon Fraser wanting statistical advice concerning their research.

At present the service operates as follows.
Statistics faculty make themselves available for two hours per week - generally two faculty members at a time. Clients drop in and get whatever advice they can. They often come when it is too late, but the big problem is lack of follow up.

We think that mandatory participation by students in the consulting service will provide some follow up. Statistical faculty would still make themselves available for 2 hours per week (or more if the service were in great demand and the faculty could afford the time). They would be accompanied by our students. When clients drop in the problems will be discussed as usual but more sophisticated analyses would be considered. The students would, under faculty supervision, seek out the literature and apply, with the client, better techniques. We think this process benefits all three parties. Clients, students and faculty, perhaps to different degrees, learn about the difficulties of the data, about modern techniques and about the statistical literature.

We intend to grade the courses only on a Satisfactory/Unsatisfactory basis.

The consulting courses are named consulting courses rather than "internship" because "consulting" is the statistics "industry standard" term. We have given two course numbers for consulting purely to enable the office of the Registrar to record easily two semesters of participation in the service on a student's transcript.

## 7 Questions:

( $n$ ) It should be clearly stated that if a student has already taken MATH 875, 876, 877, the student may not take STAT 801, 802, or 890.
(p) Should therr be a specifically stated Calendar entry?
(q) Greater consistency of course outlines is needed, in style and content. Generally, the course outlines are too brief.

Point 12 in Dr. Webster's memn.

Reply: A revised calendar entry for Mathematics yraduate programs is attached in Appendix II. Revised course outlines appear in Appendix I.

8 Questions:
(r) Request up-to-date CV's of faculty members.

Reply: Current CV's for Eaves, Lockhart, Routledge, Stephens, Villegas and Welion are attached. (Appendix III)

9 Questions:

Point \#13 of Dr. Webster's memo.

Reply: Applicants for this program will be processed by the Departmental Graduate Studies Committee as usual.

Dr..C. Graham, Chairman,
Mathematics Dopartment
Subject. M.Sc (Statistics) Proposal
from............hohn f. Wobster
Dean of Graduate stur!ie:
Dale.........Tune 8, 1983

I write further to my menorandum of 31 Nay 1983 in which I gave you a list of comments on your proposed statistics programme in the form of the unaproved minutes of the first meeting of the Asscssment Committec. As promiscd, I now write and provide you with further reflections on this programme. There will be some overlap of the comments made in this memorandum with those made earlicr. On the other hand, the combination of the information in the two memoranda should give you a good indication as to the response of the Comimittee to your proposal.

I will present my points in point form to aid clarity.

1. My sense of the mecting was that the Committec members were very much in favour of the programme but they were somewhat concerned with the proposal as it now stands and they wanted it to be revised so as to incorporate several matters that will enhance the final product.
2. The basic impression was that the programme, as presented, was somewhat confused in its packaging in that it was difficult to extract the uppropriatc information in order to be able to answor the various questions that are likely to be raiscd by SCAP and Universities Council. I urge you, once again, to refer to the suggested outline for "new proposals"that I attached to my previous memorandum.
3. I suggest that amongst other things your proposal include three clearly identifiable main areas:. First, the philosophy of the programe, second the nuts and bolts of curriculum design to resarch needs and, third, the calendar entry. Many of the comments i make below wil! automatically fall within one or other of these three arcas.
4. You should make a compcliling case for the need for this programme in view of current budgetary constraints in the "province. The proposal should readily appear as a "necessity" rather than "a nice to have" programme.
5. The resources reguired to offer this programme must be more clearly stated and not conflict in different parts of the proposal. If new courses are to be offered then where are the resources to give these new courses. Does this require increased manpower, or are we doing it by diminishing the course offerings in other areas? This in itself is a cost even though it may appear as a hidden cost. I suggest that you also consider computing costs as well as iibrary, hardware and personnel costs. If you believe that there is an additional pressure on the Departmental Office then perhaps you should consider whether or not there is an additional cost in that area too.
6. Plcasc clarjfy further the meaning of the term "nonthesis" dearee. The question arose as to whether really it should be called a "project" degree. How close is this to an extended essay format; do you intend to type-up, bind and lodge the projects in the Library the same as occurs with extended essays; how long will the project take; what is the nature of the supervision; why are there no defenced like a project; will the project be formally
7. I suggest that further consideration is given to clarifying the possible flow from an M.Sc. in this area into a Ph.D. programme. Is there a problem with transferring from an M.Sc. in Statistics into a Ph.D. programme? In other words what would the admission requirements be for contry into a ph. D. after having taken this form of a master's degree.
8. It would be worth-while relating the programme to the area of interest and strengths in the Department. This no doubt would form part of the introduction and would clarify for outsiders and, indecd, for other members of the University the thrusts and directions within your Department. Furthermorc, it would indicate how this new emphasis on the liaster's degree would integrate with other programmes and strengths.
9. لIow large are the jrogrammes in other universities. Do thesc jrogrammes satisfy the needs for statisticians with a master's dogree, if. not why not? In other words, the fact that other universitices do have this form of degree is no justification for us lloing it also. On the contrary, it may be a good ricason for us not putting forward this degree.
10. A forecast of cniolments in association with the comments made to the item above would be helpful, together with associated rationale. I fully understand that such figures would be guesstimates but, nevertheless, they would provide the Committee with samples of data from elsewhere and the line of thinking that the Department is using in protaration of the programme.
11. Please clarify the mode of operation of the Statistics Consulting courses. Will these operate is internships or are credits offered for these courses, and if so why two credits? Do individuals get paid for a consultation as well as obtaining credits? This may well be a conflict of interest. In what way does this consulting course differ from the current problem-solving consultation which already is offered by the Department?
12. There is a fecling in the Committee that the course description was rather inadequate and certainly inconsistent from one course to another, especially as rogards to the description of the course content and the sample reading and general material. Some statement should be made on possible overlap of credits between courses if this occurs.
13. One final point that arose was the question of the organizational procedures to be used within the Department. In other words, will applicants for this urogramme be processed by the regular Departmental Gracuate Committec just the same as applicants for othor degrce progranmes within the Department.

I shall be very pleased to meet with you at our mutual convenience to discuss aspects of the above points and those made in the earlier memorandum. Best of luck in jour initial deliberations. The Assessment Committce 1 am sure will look forward to seeing the rewritten application of the proposal.


## CALERDAR INPORMATION:

## Department: MATHEMATICS Course Number: MATH 871-4

Title: Applied Probability Models

Description: Applications of stochastic processes: Queues, inventories, counters, etc. Reliability and life testing. Point processes. Simulation.

Credit Hours: 4 Vector: 4-0-0 Prerequisite(s) if any: Math 387 or equivalent

## ENROLMEANT AND SCTIEDOLING:

Estimated Enrolment: 5 When will the course first be offered: 84-3

How often will the course be offered: Every second year

JUSTIFICATION: (see attached)

## RESOURCESS:

Which Faculty member will normally teach the course: Lockhart, Neldon and others

What are the budgetary implications of mounting the course: $1 / 6$ of a faculty member.

Are there sufficient Library resources (append details): Yes, see attachad.

Appended: a) Outline of the Course.
b) An indication of the competence of the faculty member to give the course.
c) Library resources.

| APPROVED: | Dept. Graduate Studies Ctte: | Date: |
| :---: | :---: | :---: |
|  | Faculty Grad. Studies Ctte: | Date: |
|  | Faculty: | Date: |
|  | Senate Grad. Studies Ctte: | Date: |
|  | Senate: | Date: |

## Justification:

This course is part of the proposed project option in Statistics. The topics covered have broad application in such diverse areas as biology, opidemiology, demography, traffic engineering, quality control, astronomy and many others. This breadth makes the course important and useful to practising statisticians.

Compertence of faculty members:
Dr. Lockhart has done and is doing research in this area. Dr. Weldon has consulting and research experience in this area. (Dr. Weldon has previously given a special topics course in this area.)

## Library Resources:

The library is well supplied with texts in this area and subscribes to all the major statistical journals. See attached memo from E. A. Weinstein.

## MATHEPATICS 871-4

## APPLIED PROBABILITY MODELS

## Course Outline

Many processes which produce data are known to be probabilistic in nature such processes are called stochastic processes. Examples are: the tines at which clients are served in a bank, or by a telephone exchange; the time interval between arrivals of cosmic rays, or of events such as incifience of a disease or of earthquakes; the genesis and spread of cells; the locations of mineral deposits (spatial processes). This course covers the probabilistic analysis of such processes which produce data to be analyzed by statistical technigues. Specific processes and topics are:

1. Review of basic results in probability and stochastic processes: random walks, Markov.chains, simple queuing systems, Poisson processes, branchiny processes, birth and death processes.
2. General queiing systems: inventories, storage, counters, traffic flow and other applications.
3. Renewal processes: reliability, life testing, survival analysis.
4. Sampling models in stochastic processes, e.g. applications to engineering and medicine.
5. Point processes: in space in time; general theory and applications to biology, mining, geostatistics, astronomy, demography.
6. Simulation techniques in exploring the properties of complicater modela.

Suggested Text: Ross, Sheldon M., Introduction to Probability Moriels. Academic Press, 1972.
This book will be supplemented by course notes in areas such as 5 and 6 above.

## SIMON PRASER UNIVERSITY

New Graduate Course Proposal Form

## CALPRDAR INPORUATION:

Department: MATHEMATICS Course Number: STAT 801-4

Titles Mathematical Statistics

Deacription: Advanced mathematical statistics. A survey of basic concepts in point e:stimation, interval estination and hypothesis testing. Principles of inference.

Credit Bours: 4 Vector: 4-0-0 Prerequisite(s) if any: Students with credit for Math 875-4 may not receive credit for Stat 801-4.

## ENROLMENTP AND SCREDULING:

Estimated Enrolment: 5 When will the course first be offered: N/A

How often will the course be offered: Once a year

JUSTIPICATIO:

Thís course is replacing MATH 875-4 (Statistics I). This is a name change only.

## RRSOURCES:

Which Faculty member will normally teach the course: Eaves, Lockhart, froutledge, Stephens, Villegas \& Weldon

What are the budgetary implications of mounting the course: None.

Are there sufficient library resources (append details): Yes. None needed.

APPROVFD: Dept. Graduate Studies Ctte: $\qquad$ Date: $\qquad$

Paculty: Date: $\qquad$
Senate Grad. Studies Ctte:
Date: $\qquad$
Senate: Date: $\qquad$

## New Graduate Course Proposal Form

## CALENDAR INFORAMATION:

Department: MATHEMATICS
Course Rumber: STAT 802-4
Title: Nultivariate Analysis

Description: An advanced course in Multivariate Analysis. Factor analysis, discriminant analysis, principal components, canonical correlations. Multivariate regression and analysis of variance.

Credit Bours: 4 Vector: 4-0-0 Prerequisite(s) lf any: Students with credit for Math 876-4 may not receive credit for stat 802-4.

## ENROLXIENP AND SCBRDULING:

Estimated Enrolment: 5 When will the course first be offereris $N / A$
How often will the course be offeren: Once a year

## JUSTIFICATION:

This course is replacing MATH 876-4 (Statistics II). This is n name change only.

## RBSOURCRES:

Which Faculty member will normally teach the course: Eaves, Inckhart, Routledge, Stephens, Villegas \& Welion

What are the budgetary implications of mounting the course: None.
Are there sufficient Library resources (append detalls): yes. Nonc necilef.

| APPROVED: | Dept. Graduate Studies Ctte: |
| ---: | :--- |
|  | Faculty Grad. Studies Ctte: |
|  | Faculty: |
|  | Senate Grad. Studies Ctte: |
|  | Senate: |

## SIMON YRASER UNIVERSITY

New Graduate Course Proposal Form

## CALETDAR IRPORAATION:

Department: MATHEMATICS Course Number: STAT 803-4
Titler Data Analysis
Description: A problem based course emphasizing the exploratory aspects ofstatistical analysis with emphasis on modern computer-oriented methods.
Credit Hourss 5 Vector: 4-0-0 Prerequisite(s) if anys Math 472 or equivalent or permission of the instructor
ENROLHEATS AND SCEREDULING:
Estimated Encolment: 4 When will the course first be offered: 85-1
How often will the course be offered: Every second year
JUSTYPICATION: (see attached)

## RESOURCES:

Which Faculty member will normally teach the course: Weldon, Routledge \& others.

What are the budyetary implications ur mounting the course: $1 / 6$ of a faculty member.

Are there surificient Library resurces (append details): Yes, see attached.

Appended: a) Outline of the Course.
b) An indication of the competence of the Faculty member to give the course.
c) Library resources.

| APPROVED: | Dept. Graduate Studies Ctte: | Date: |
| :---: | :---: | :---: |
|  | Faculty Grad. Studies Ctte: | Date: |
|  | faculty: | Date: |
|  | Senate Grad. Studies Ctte: | Date: |
|  | Scnate: | Date: |

## Justification:

This course is part of the proposed project option in statistics. The course deals with modern techniques widely used in the initial exploration of large data sets. Such data sets are now very common in the social sciences, medicine and other fields. Exposure to the largely computer based techniques in this course is important to any practising statistician.

Competence of Faculty Members:
Dr. Weldon has had extensive experience through consulting and rescarch in this area. This material is standard in the consulting experience and training of Dr. Routledge and other members of the statistics group.

Library Resources:
The library is well supplied with texts in this area and subscribes to all the major statistical journals. See attached memo from $E$. A. Weinstein.

DATA ANALYSIS

## Course Outline

A striking revolution has occurred in Statistics with the arrival of the computer. Valuable methods of analysis were in the past not available because of lack of rapid computation. These methods, for example in analysing large quantities of data, or data which is multivariate, are now available. Also, new methods have been developed, which are computer intensive, for which the property can be found out by extensive computer analysis. Finally graphical methods are now developed for rapid assessment of data. Computeroriented statistical analysis is the subject of this course. The intention Is to bring the student to the forefront of modern methods of statistical analysis.

## Specific topics are as follows:

1. Reduction of dimensionality. This is useful in simplifying the data set when the information content of several variables may be represented by values of only a few variables.
2. Study of multivariate dependencies. The main problem in this section is that of determining whether (and to what degree) two sets of variables carry any information in common.
3. Multidimensional classification and clustering. Classification is the allocation into describable categories of uncategorized items. Clustering is the determination of the existence and nature of categories that are previously unknown or unexpected in the group of items measured.
4. Assessment of statistical models. In this section the parametric models (and related estimation and hypothesis tests) that have been proposed for multivariate data are discussed, along with methods to check the applicability of such models in particular instances, and to improve the fit of such models when necessary.
5. Summarization and exposure of multivariate data. The emphasis here is on graphical methods of exploring multivariate data sets.

Suggested Text: Tukey, J. W., Exploratory Data Analysis. Addison-Wesley, 1977

This text will be supplemented by course notes and journal articles.

## CALENDAR INFORMATION:

## Department: MATHEMATICS Course Number: STAT 804-4

Title: Time Series Analysis
Description: An introduction to tine series models and their analysib. Both time-domain and frequency-domain techniques will be studied.

Credit Hours: 4 Vector: 4-0-0 Prerequisite(s) if any: Math 472 or equivalent or permission of the instructor.

## ENROLAENT AND SCHEDULING:

Estimated Enrolment: 5 When will the course first be offered: 85-3

How often will the course be offered: Once every two years

JUSTIFICATION:

See attached memo.

## RESOURCESS:

Which Faculty member will normally teach the course: Villegas, Routlerge $G$ others.

What are the budgetary implications of mounting the course: $1 / 6$ of a faculty member.

Are there sufficient Library resources (append details): Yes, see attached memo.

Appended: a) Outline of the Course.
b) An indication of the competence of the Faculty member to give the course.
c) Library resources.


## Justification:

This is part of the proposed project option in Statistics. This course studies techniques for analyzing observations on time-dependent processes. Such techniques have wide applicability. Example of areas of application include the analysis of seismic data in geology, the search for patterns in the fluctuations in economic activity, and the study of periods in the vibrations of aircraft speeding down a runway. Such breadth of applicability makes this an important part of statistics.

## Competence of Paculty Members:

Prof. Villegas is currently active in research in this area. Dr. Routledge has worked on both theoretical and applied problems in time series. Time Series Analysis is an important part of the background of most members of the statistics Group in the Department of Mathematics.

## Library Resources:

The library is well supplied with texts in this area and subscribes to all the major statistical journals. See attached memo from e . A. Weinstein.

## TIME SERIES ANALYSIS

## Course Outline

A time series is a sequence of values (or a vector of values) occuring in time. Examples are the strengths of earthquake shocks at various times, the daily stock price of a commodity, the sales of airline tickets per month, the unemployment figures per quarter, etc. In analyzing such series a model is proposed, and the required parameters estimated. Testing the model is also very important. This course describes the historical approaches to finding the correct model, together with methods of analysis, and of predicting future values.

1. The separation of trends, cycles and random perturbations in a time series. Moving averages and seasonal adjustment. The autocorrelation function; its estimation and interpretation.
2. Models for time series data. Stationary processes, autoregressive-moving-average processes, Gaussian processes.
3. Statistical inference on autoregressive-moving-average processen. Fitting a model to such a process. Regression analysis with serially correlated data.
4. Introduction to spectral analysis and the search for cyclical fluctuations.
5. Prediction and Control.

Suggested Text: Box, G.E.P. and Jenkins, G.M. , Time Series Analysis: forecasting and control. Holden-Day 1976.

## New Graduate Course Proposal Form

## CALETDAR INPOPQATIOA:

Department: HATHBMATICS Course Number: STAT 805-4
Titles Mon-Parametric Statistics and Discrete Data Analysis

Description: Order statistics, rank statistics, procedures based on the empirical distribution function. Asymptotic efficiencies. Goodness-of-fit. Contingency tables, log-linear models. Further topics.

Credit Rours: 4 Vector: 4-0-0 Prerequisite (s) if any: Math $372 \&$ Math 473 or equivalent or permission of the instructor.

ENROLMBNT AND SCREDULING:

Estimated Enrolnent: 4 When will the course first be offered: 85-3
How often will the course be offered: Every second year

JUGTIPICATROA:
soe attached.

## RESOUSCES:

Which Faculty member will normally teach the course: Stephens, Lockhart \& others.

1
What are the budgetary implications of mounting the course: $1 / 6$ of a faculty nember.

Are there sufficient Library resources (append details): Yes, see attached.

Appended: a) Outline of the Course.
b) An indication of the competence of the Faculty member to give the course.
c) Library resources.


## COVERING MEMO CONCERNING STAT 805-4: NON-PARAMETRIC STATISTICS AND DISCRFTE

 DATA ANALYSIS.
## Justification:

This course is part of the proposed project option in statistics. Both of the fields covered by this course are important to practising statisticians. Techniques in these areas are widely used - particulariy in the social sciences, management science, biology and medical research.

Competence of faculty members:
Dr. Stephens has published numerous papers in this area and is an internationally recognized expert in the field of goodness-of-fit. Dr. Lockhart is currently working on problems in this area. The material covered in this course is standard in the backgrounds of all the members of the statistics Group in the Department of Mathematics.

## Library Resources:

The library is well supplied in this area and subscribes to all the major statistical journals. See attached memo from E. A. Weinstein.

Non-parametric Statistics and Discrete Data Analysis

## COURSE OUTLINE

Non-parametric statistics is the area of statistical analysis especially adapted to situation wenever the assumptions of classical statstical analysis are likely, or known, to be false; for example, the often-used assumption of normality, exponentiality, or independence may be relaxed. This field has been much developed in recent years, particularly with availability of computers. The ranks of the observations are often used, and the problems of distribution theory frequently become combinatoric. Another important area is model justification, that is, to decide if a model, classical or otherwise, appears justified by the data. This is the area of goodness-of-fit, also much developed in recent years. Thirdly, discrete data, usually based on counts, occurs often in statistics. A major tool is contingency tables, and there exist several techniques for modelling and analyzing such tasks. This course covers these three major topics.

## Content:

1. Brief survey of undergraduate work in non-parametric statistics, the sign test, the Mann Whitney test.
2. Procedures based on ranks: the Wilcoxon rank sum test, the Wilcoxon signed rank test, Spearman correlation.
3. Distribution-free procedures and goodness-of-fit. Techniques based on the empirical distribution.
4. Other goodness-of-fit procedures: Chi-squared tests; regression tests.
5. Properties of the above procedures: Asymptotic efficiency, etc.
6. Contingency tables: exact tests and large sample approximations.
7. The log-linear model.
8. Logit, probit and norinit analysis.

Suggested rexts:
Plackett, R.C., The Analysis of Categorical Data, 2nd ed. MacMillan, 1981.
Cox, D.R., The Analysis of Binary Data. Methuen, 1970.
Pienberg, Stephen E., The Analysis of Cross-classified categorical data. 2nd ef., MIT press, 1980.

D'Agostino, R. and Stephens, M.A., Goodness-of-fit Techniques. (To appear, Marcel Dekker).

Conover, w.J.. Practical Non-parametric Statistics, Wiley, 1971.

# New Graduate Course Proposal Forin 

Department: MATHFMATICS Course Number: STAT 811-0

## Title: Statistical Consulting I

Description: Students will participate in the departinent statistical consulting service under the direction of faculty members. This course will be graded on a Satisfactory/Unsatisfactory basis.

Credit Hours: 0 Vector: 0-0-2 Prerequisite(s) if any: This coursis is open to M.Sc. and Ph.D. students in Statistics.

## ENROLMEAT AND SCHEDULING:

Estimated Enrolment: 5 When will the course first be offered: 84-3, if
possible

How often will the course be offered: Every semester ( 3 times per year). Initially possibly only Fall 8 Spring

JUSTIFICATION:

See covering memo.

## RBSOURCRS:

Which Faculty member will normally teach the course: Eaves, Lnckhart, Routledge, Stephens, Villegas \& Weldon

What are the budgetary implications of mounting the course: Initially none. Eventually 1 faculty member will probably be required for stat 811-0 and STAT 812-0 and generally to run the consulting service.

Are there sufficient Library resources (append details): Yes, see attachment.

Appended: a) Outline of the Course.
b) An indication of the competence of the faculty member to glve the course.
c) Library resourcer.

| APPROVED: | Dept. Graduate Studies Ctte: |
| :--- | :--- |
|  | Faculty Grad. Studies Ctte: |
|  | Faculty: |
|  | Senate Grad. Studies Ctte: |
|  | Senate: |

## Justification:

Participation in a consulting service is an essential part of the training of a statistician. This course is an integral part of the project option in statistics.

## Competence of Faculty Members:

Statistical consulting is an important part of any academic statistician's background. All of the statisticians in the Mathematics Department have suhstantial experience of this type. The statistics group has been running a consulting service for the university for several years now.

## Ridbrary Resources:

This course needs the same library resources academic statisticians need for their work at all times. Sep attached memofrom $E$. A. Weinstein.

## STATISTICAL CONSULTING 1

## OUTLINE OF COURSF

Students will be expected to participate in the analysis of problems brought to the consulting service from start to finish. This means they will be present when problems are first brought in; they will help in the formallzation of these problems and selection of appropriate techniques; they will carry out analyses and they will participate in the interpretation of the results. As they gain experience they will play larger and larger parts in the process. We expect that, in the second semester of consulting, they will find a problem suitable for the basis of the M.Sc. project.

# New Graduate Course Proposal Form 

## CALBNDAR IAEORMATIOM:

## Department: MATHEMATICS . Course Number: STAT 812-0

Titler Statistical Consulting II

Description: Studonts will participate in the department statistical consulting service under the direction of faculty members. This course will be grader on a satisfactory/unsatisfactory basis.

Credit Hours: 0 Vector: 0-0-2 Prerequisite(s) if any: This course . is open to M.Sc. and Ph.D. students in Statistics.

## ENROLAMNT AND SCHPDULING:

Estimated Enrolment: 5 When will the course first be offered: 85-1

How often will the course be offererl: Every semester (3 times per year). Initially possibly only Fall and Spring.

## JUETIPICATION:

Sce covering memo.

## RESOURCES:

Which raculty member will normally teach the course: Eaves, Lockhart, Routledge, Stephens, Villegas \& Weldon

What are the bungetary implications of mounting the course: Initially none. Eventually 1 faculty member will probably be required for STAT 811-0 and STAT 8i2-0 and generally to run the Consulting Service.

Are there sufficient Library resources (append details): Yes, see attachment.
Appended: a) Outline of the Course.
b) An indication of the competence of the Faculty member to give the course.
c) Library resources.


## Justification:

Participation in a consulting service is an essential part of the training of a statistician. This course is an integral part of the project option in statistics.

## Competence of Faculty Members:

Statistical consulting is an important part of any academic statistician's background. All of the statisticians in the Mathematics Department have substantial experience of this type. The statistics group has been running a consulting service for the university for several years now.

## Library Resources:

This course needs the same library resources academic statisticians necd for their work at all times. See attached memo from r. A. Weinstein.

## STATISTICS 812-0

## STATISTICAL CONSULTING II

OUTLINE OF COURSE

Stuients will be expected to participate in the analysis of problems brought to the consulting service from start to finish. This means they will be present when problems are first brought in; they will help in the formalization of thesc problems and selection of appropriate techniques; they will carry out analyses and they will participate in the interpretation of the reBults. As they gain experience they will play larger and larger parts in the procesn. We expect that, in the second semester of consulting, they will find a problem auitable for the basis of the M.Sc. project.


The proposed expanded graduate program in applied probability and statistics consists of twelve (12) new course proposals. I have examined these proposals and find no new areas of research or teaching therein, but rather extensions of areas of longtime standing at S.F.U.

The library collection in the areas of mathematical statistics, probability and numerical analysis are currently complete and have been for some years. The older lIterature in support of our collection is readily available from U.B.C. and the National Science Library. Absolutely no additional funds will be needed by the Library in support of this program.
ah
c.c. Prof. C. Villegrs

Dept. of liathematics


## CAIFATDAR INFORQATION:

Department: MATHEMATICS Course Number: STAT 890-4
Title: Selected Topics in Statistics

## Description:

Credit Hours: 4 Vector: 4-0-0 Prerequisite(s) if any:

## ENROLNDNT AND SCHESDULING:

Estimated Enrolment: 5 When will the course first be offered: N/A

How often will the course be offered: Once a year

## JUSTIPICATION:

This course is replacing MATH 877-4 (Statistics: Sclected Topics).

## RESOURCESS:

Which Faculty member will normally teach the course: Eaves, Lockhart, Routledge, Stephens, Villegas \& Weldon

What are the budgetary inplications of mounting the course: None.
Are there sufficient Library resources (append details): Yes

Appended: a) Outline of the Course.
b) An indication of the competence of the Faculty member to give the course.
c) Library resources.

| APPROVED: | Dept. Graduate Studies Ctte: |
| :--- | :--- |
|  | Faculty Grad. Studies Ctte: |
|  | Faculty: $\quad$ Date: |
|  | Senate Grad. Studies Ctte: |
|  | Senate: |

## M.SC. PROGRAM

A candidate for the M.Sc. degree wlll normally be required to obtain a total of at least 20 semester hours of credit for coursework beyond courses taken for the Bachelor's degree. Of these 20 hours, at least 12 are to be in graduate courses or graduate seminars, and the remaining 8 may be chosen from graduate courses or graduate seminars or 400 -level undergraduate courses. He/she will also be required to submit a satisfactory thesis and to attend an oral examination based on that thesis and related topics.

## Project Option in Statistics

Students interested in pursuing an M.Sc. program in Statistics may follow a project option. The project option is intended to give students instruction in a wide range of statistical techniques and also to provide experience in the practical application of statistics. The program should be of interest to students who wish to acquire statistical expertise.

Students in the program will be required:
(i) To complete at least 28 semester hoinrs of credit for coursework in Statistics and related fields beyond courses taken for the Bachelor's degree. Of these 28 hours, at least 20 are to be in graduate courses or graduate seminars, and the remaining 8 may be chosen from graduate courses or graduate seminars or 400-ievel undergraduate courses. Normally these courses will include stat 801-4 (Mathematical Statistics), STAT 802-4 (Multivariate Analysis) and at least one of STAT 803-4 (Data Analysis), and STAT 804-4 (Time Series Analysis).
(ii) To complete satisfactorily STAT 811-0 (Statistical Consulting I) and STAT 812-0 (Statistical Consulting II).
(iii) To submit and defend successfully a project based on some problem of statistical analysis (as outliner in the GENERAL REGULATIONS). This problem will ordinarily arise out of the statistical consulting service.

Students with backgrounds in other disciplines, or with inadeguate background in statistics, may be required to take certain undergraduate murses in the Department in addition to the above requirements.

## PH.D. PROGRAM

A candidate for the Ph.D. degree will generally be required to ohtain at least 28 semester hours of credit for coursework beyond courses taken for the Bachelor's degree. Of these 28 hours, at least 16 are to be in grafuate courses or graduate seminars or 400-level undergraduate courses. The course-
work in all cascs will involve study in at least four different areas of Mathematica, at loast one of these areas being in Analysis (Applied, Complex or Real). Applied Analysis is understood to include Differential and Integral Frguations and Methods of Applied Mathematics.

Candidates for the Ph.D. degree will normally be required to pass a general examination. At the option of the candidate's Committee, this shall consist of either written papers in four areas of study, or written papers in three areas of study, and graduate coursework in an approved fourth area in which a grade of ' $B$ ' or higher is obtained. In either case, one of the written exam areas must be in Analysis (Applied, Complex or Real). A candidate ordinarily will not be allowed to take the general examination more than twice. Students will be interviewed and advised regarding appropriate courses and examination curricula. Course programs and examination programs require Departinental approval.

Students who have completed a Master's degree will normally be required to attempt the general exanination within one year of their initial registration in the Ph.D. prograin.

A candidate for the Ph.D. may be required by his/her Supervisory Committee to acquire proficiency in reading mathematical papers in either French, German or Russian.

Students will be required to submit and successfully defend a thesis which will embody a significant contribution to mathematical knowledge.

Por further information and regulations, refer to the General Regulations section (1).


January 26, 1984

```
Professor David Brillinger
Department of Statistics University of California Eertceley, California
C.S.A.
\(9: 720\)
```


## Dear Professor Brillinger:

Thank you for agreeing to serve as an assessor of the proposed $\therefore$ :Sc. Statistics Programme.
"Re: honorarium aid by this liniversity for such services is $\$ 200$. I enclose a copy of the proposal, a copy of the University C: arduatc Regulations governing all graduate students at Simon Fraser, and a description of the proposed programme.

The Assessment Committee would appreciate your frank ounments on the academic merit and suitability of the proposed programme. please include in your report answers to the following questions:

1. Is the available academic expertise (see attached curricula vitae) sufficient to implement the programme?
2. Do you think that graduates of the programme will be of quality. comarai)le to those produce l at the lealimy institutions in the field?
3. How large is the need for the graduates that this programme would practice and is it a continuing nerd?
4. Is the particular programme :rinsed likely to meet the stated objectives?

You should note that these questions are not meant to limit the range of your aments in any wily.

Furthermore, it would be most helpful if grni could make, in addition to your other oomments, specific recommendations on either the approval, modification, delay, or disapproval of the programme.

Your report will be made available, upon request, to menbers of the Comittees and other governing bodies both within and without the University that must approve the programme before it can be implemented.

It would be appreciated if you could soe your way to responding within the next couple of weeks.


J: ※, Cle
Altachments

TELEPHONE: (415) G02-27M1
cable: univcale

DE:PANTMF:NT OF STATISTICS BEHKEIIFI, (AI.IFONNIA 94721

John N. Weber
Dean of Graduate Studies
Simon Fraser University
Burnaby, B.C.
Canada V5A 156

Dear Dean Weber,
Enclosed please find my assessment of the proposed M. Sc. Statistics Programme. I think that it is a fine programme, one likely to contribute measurably to the stock of statistical workers in your province and country •

Yours sincerely

!avid Re Hrillinger
Professor

MAR 71904
DEAN OF GRAZUN:TVE STUDIES OFFICE


IHEDAITRAFNS (IF STATISIITS HF:HKHIIF:Y, CAI.IFORNIA 94720

29 February 1984

## Assessment of Proposed Ki Sc. Statistics Programme

at Simon Fraser liniversity

## David R• Brillinger

The Proponal. Cut to bare details this programme if seen to involve:
1). 28 semester hours of coursework with at least 20 hours at the frainate level,
ii). participation in consulting couree for two semestere,
iii). subnissic and defence of a project, to be later lodged in the Library,

$$
\text { iv) - residence for } 4 \text { semesters, }
$$

v) - early hirine of $2 / 3$ faculty member.
vi) - later hiring of a further faculty member,
vii) - initiation of various new courses.
liasters Decrees in Statistics. The $M \cdot A \cdot$ and $N \cdot S c \cdot$ degrees in Statistics have two fundamental roles: a) as preliminaries to doctoral work and $b$ ) as terminal preparation for applied work. The doctoral work may be in Stitistics, or some other field such as Economics or Education. When a thesis or project is involved, it is meant to lay the foundation for later independent work. The studente may be recent Bachelors or individuals with work exnerience
seeking further advanced training. Those obtaining the decrer go on to positions in education, industry, acriculture, covernment, health, busincss and other professions.

## Comments on the Precent Proposal

The programme under consideration has all the characteristicy just listed for masters degrees and in addition is innovative in several respeotse Its academic merit is high. It incorporates a close correlation between theory and application as is vital for Statistics and recognises that good work in applied statistics nearly always calls for more than mechanical application of prepackaged methods. It recognises, further, that the amount of statistics subject matter is now vast.

Answers to some questions:

1. "Is the available acadomic expertise ... surficient ...?" The calibra of the current faculty is fine and their areas of interest are appropriate. The new courses would give the programme character. As indicated in the proposal, these could be reading courscs to beein; however early hirine of a new faculty member (junior level) seems in order.
2. "... graduates ... quality comporable to ... leading institutions ...?" Yes, because of the substantial personal attention and supervision they would experience; however I make one proviso. I do not know how contemporary computing facilities are at SFU - these days the leading institutions produce graduates with real experience of statistical computing.
3. "... need for the graduates ...?" The demand for statisticians with consulting and computing skills is dramatically high already and increasing rapidly. Some of the fields have been listed above. Individuals with liasters
degrees are probably in greatest demand.
4. "... programme ... to meet the ... objectives?" Yes, providing the requested courses and staffing are approved.

Recomondation
I recommend that the indicated programme be approved in its present forme In the attached Appendix, I indicate a few suggestions for consideration.

Daind $R$ Professor

## Anpendix

I. I wonder if STAT 802 is the best choice for the compulsury course after STAT 801 - Perhaps, a somewhat modified, STAT 803 would be better.
II. Perhaps credit should be given for STAT 811,812 - They will have S/U grades and so would not count towards the 20 required hourse Giving credit will allow other institutions to assess the amount of wort involved, Ph.D. students might chose to attend, so too might students from other Departments. Further, consideration mefht be/riven to work here. (At Berkeley the Graduate Division does pay the students in a comparable course about $\$ 150$. per semester. Further, at Berkeley the faculty nember responsible for the course receives teachine credit for it.)

1II - Jerhaps I nidsied it, but I am not sure whether all the coursos are meant to be those of the lathematics Departinent. If outside departmont courses are to be allowed, I would sugiest that it is imperative thet any student's procrame be approved in advance hy the Graduate Advisor.
IV. It would appear that the enrolments in the rvery-otici-year courses would ve higher, as they could contain a mix of rirst and second year studente.
V. I would expect the Consulting Service as well as providing educational opportunities for the students, to provide research motivation for the faculty. It will help students and faculty of many departinents. lt would be in SFU'f interect to support it to the maximum extent josisjble.

## University of Waterloo

March 1, 1984

Professor John M. Webster Dean of Graduate Studies Simon Fraser University Burnaby, B.C. V5A 156

Dear Professor Webster:
I have examined the proposal for an M.Sc. programme in Statistics with project option at Simon Fraser University. In my opinion, this is a strong proposal which should be approved. My report is enclosed.

Please let me know if $I$ can be of any further assistance.

JGK:mk
Sincerely yours,


Encl.

# Report on the proposed <br> M.Sc. in Statistics - Project Option <br> Department of Mathematics <br> Simon Fraser University 

Prepared by .
James G. Kalbfleisch, Professor Department of Statistics and Actuarial Science University of Waterloo

March 1, 1984

Report on M.Sc. in Statistics - Project Option

## General Comments

A successful applied statistician must have
(1) basic mathematical skills so that theory can be understood and modified as necessary;
(2) a thorough grounding in statistical principles and a wide variety of statistical methodologies;
(3) familiarity with computers and their uses;
(4) the ability to communicate effectively with clients, so that problems are properly formulated and results are communicated in the language of the client.
Beginning graduate students in Statistics are almost always deficient in areas (2) and (4), and depending upon their backgrounds, they may also require additional work in (1) and (3).

It is practically impossible to cover all of these areas in a masters programme which involves a substantial thesis and a limited amount of coursework. As a result, a coursework masters with project, such as that proposed at Simon Fraser, has become standard at many universities. It can be argued that this sort of programme is preferable even for those who will continue to the Ph.D. and an academic career, since they will undoubtedly be involved in consulting and service teaching to non-mathematicians.

At the University of Waterloo, we have about 20 masters students in Statistics. Almost without exception, they are advised to choose a coursework masters with project. The situation is similar at other Ontario universities with which I am familiar.

## Anwers to Dean Webster's Questions

(1) Is the available academic expertise sufficient to implement the programme?
Yes. Simon Fraser University is fortunate in having an active and well-qualified group of faculty members in Statistics. My only concern is with the extra workload which this programme will create. If this programme is approved, and I believe that it should be, then high priority should be given to hiring an additional faculty member in Statistics.
(2) Do you think that graduates of the programme will be of quality comparable to those produced at leading institutions in the field?
Yes. Given the quality of the faculty, the provision of hands-on consulting experience, and the variety of areas covered in the proposed course offerings, graduates will be well prepared for careers in government or industry, or for Ph.D. work in Statistics.
(3) How large is the need for graduates that this programme would produce and is it a continuing need?
our experience at Waterloo has been that there is a strong demand for Masters graduates in Statistics. A recent manpower survey in the U.S. identified Statistics and Computer science as areas in which the projected number of job openings at all levels greatly exceeds the expected number of graduates. There is no reason to suppose that the situation in Canada will differ markedly from that in the U.S. Most of the job openings will be for graduates with expertise in statistical applications and computing. This is precisely the sort of graduate which the proposed programme aims to produce.
(4) Is the particular programme proposed likely to meet the stated objectives?
Yes. Consulting experience plus courses such as Stat 803-4 and 804-4 will expose students to statistical applications and give them a greater breadth of training. preparation and defence of the project will help them to develop important communication skills.

## Recommendation

I strongly recommend that the proposed M. Sc. in Statistics with project option be approved, and that high priority be given to the hiring of an additional faculty member in Statistics.

## Additional Comments

It is commendable that Statistics faculty members provide a consulting service to the university community. Undoubted y they feel that it is worthwhile for their own professional development as well as for the assistance it provides to others on campus.

If graduate students are to be involved, it will be necessary to formalize and further develop the consulting service, and the consulting service is likely to develop into a major activity of the statistics group. They should receive recognition, perhaps in the form of reduced teaching loads, for providing this service. In addition, they should seek funding for support staff from the University, and from external agencies such as N.S.E.R.C.


James G. Kalbfleisch, University of Waterloo, March 1, 1984.
Dr. John M. Webster
Associate Vice President, Academic Office of the Dean of Graduate Studies
Simon Fraser University
Burnaby, B. C.
V5A 156
Dear Dr. Webster:
I am enclosing my assessment of the M. Sc. Statistics Program: Statistics Option proposed by the Department of Mathematics. My assessment is that the plan is timely and that the faculty, particularly augmented as suggested in the proposal, is entirely suitable and certainly capable of implementing this program.
1 would be most pleased to respond to a request if it was felt that I could provide further information.

Cordially yours,


Ian B. MacNeill
Professor and Chairman
: j

A Critique of The Proposal for
Master of Science in Statistics:
Project Option
Submitted by the
Department of Mathematics Simon Fraser University

February 20, 1984
lan B. MacNeill
Chairman and Professor
Department of Statistical and Actuarial Sciences
and Director of Statlab
University of Western Ontario

The stititatians in the Department of Mathematics propose a new M.Se. program in statistics differing from the traditional in two respects; tirst, more course work is to be requircd; and sccond, in place of writing a thesis, a project is co be carried out analysing data acquired under the aegis of the stacistical consulting service (SCS). It is expected that graduates from this program will possess skills uscful in many fields.

11 ASSESSMENT (Answers to questions posed in the letter accompanying the appraisal documentation).
Q. Is the available academic expertise sufficient to implement the program?
A. The statistical group at $S F U$ is very capable, and is recognized as such by the NSERC Operating Grants Committce. They possess fine publication records, and have demonstrated substantial interest and ability in the application of statistical methodology. The group possesses expertise in the area of statistical computing. Additional strength in the area of sample survey design and analysis might be provided in future additions to the faculty complement.
Q. Do you think the graduates of the program will be of guality comparable to those produced at the leading institutions in the fleld?
A. Students graduating from this program will have been exposed to the kind of iraining being required widely by employers of statisticians; provided admission standards are suitably high, the quality of the graduates should be more than compctitive. Employers arc asking for demonstrated ability co apply statistics and to use the growing array of statistical software: If such a program is not instituted, SFU may have difficulty attracting students to their MSc programs in statistics.
Q. How large is the need for the graduates that this proyram would produce und is it a continuing need?
A. It is my assessment that there is a large and growing need for masterslevel graduates with boch interest and aptitude for applications and with computing ability.
Q. Is che program likely to meet the stated objectives?
A. The stated objective is, "to provide an alternative training plan for Master's students in Statistics...". This objective certainly Will be met. However, implicit in the proposal is the objective of training students who will be effective applicd statisticians
capable of independent work in a variery of liclds. It is my assessment that the program is highly likely to achirve this objective provided the quality of the students drafted into the program is high, arid provided the flow of projects into the $S C S$ is sufficient to permit cach student co work on a meaningful project. The latter point may be a major problem if the conrolment stated on page 6 materializes because it is likely that only a fraction of the projects coming to the SCS will be suitable as MSc projects.

## DISCUSSION

## A. Rationale

The proposal makes the case that the approach to Masters-level graduate education typically followed in Mathematics Departments may not always be appropriate for training statisticians. This is so since statistics is a discipline with unique character among the mathematical seiences, the uniquencss being determined by the role statistics can play in scientific inference. In fact, many of the early contributors co statistical methodology, including fisher and Youden, were active participants in the process of scientific inference. The route to statiscics through the world of mathematical deduction does not fit into ihis tradtion. Anyunc who has taught science students knows rhat for them concretc examples provite much clearer "prool" than abstract arpuments. This is simply a reflection of the fact that experimental verification is the scientist's route to the truth. Thus, the science student is not generally disturbed by the fact only one of a number of cases has been setcled, because that is how science often advances. The mathematician, however, has less concern with the slow unfolding of imperfect knowledge and is less interested in the untidiness of scientific reality than is a statistician. Although this dichotomy is somewhat of anersimplification, it illustrates a source of much missed communcation between the scientist and either the mathematician or che statistician who emerges from a mathematical milieu. Students of statistics often need to be reminded of the role of statistics and statisticians in science; they should think of themselves as statistical scientists rather than as mathematicians. Indeed, statistics provides pliflosuphical bases and the technology of the scientific method, and has found application in many new scientific fields, with the conscquence that statistics has become, wichin relatively recent times, the matrix in which are set the biological, social and, co a certaln extent, the physical and enginecring sciences.

Part of the reason for this proliferation ol the use of statistical models has been the availability of increasingly sophisticatcd computing hardware and software. Without access to the appropriate computing resources, certain statistical tools, such as spectral methods for time serics and graphical methods for multi-variate data, could be studied only in the abstract. Modern computing facilitics now make routine what was once a curio.
B. Statistical Consulting Service

To be effective, the proposed M.Sc. program must have avallablc a good source of real statistical projects. I belicve this will be accomplished by providing consistent and effective service in the areas of statistical consulting and statistical computing. This requires extensive facilitics, operated by well-trained and experienced staff, and effectively organized so that cliencs may be dealt with in a busines:like fashion. 1 have noted at Western that it is not sufficient 10 be able only to provide to clients the experimental design at the beginning of a study and the statistical analysis of the data at the end. If one is unable to provide data-management resources in the interatices between design and analysis one may never see the client, either for design or for analysis; instead he may go to the computing specialist who can give advice on database management systems but who then may lead the client up some rather exotic path which, often as not, terminates in an expensive set of data which cannot be analysed to. answer the questions originally posed. Important roles that the consulting scrvice operated by the statistician at SFU can scrve are discussed below.

1. Statistical Compuring

The SCS can participate in the management of the interface between statistics and computing. It cań ensure that gnod staristical software, developed elsewhere will be purchased and implemented on your systems. When need for a spectfic piece of software ariscs, and none is available commercially, it can press for local development. The SCS has, 1 belicue, qualified staff who can evaluate the algorithmic and mathematical performance of statistical packages and subroutines. The SCS should ensure that database management systems are avallable for the benefit of research studies that produce large amounts of data.

The computing activitios of the scs: will bernetit firaduate and sentor undergraduate students who. through their assoriath,a with SCS. will develop expertise in romputing as it applices to statiseics. The statisticians have recognized that such expertisc will be required of all who graduate from their M.Sc. program. Statisticians with such skills are prescnily in short supply.

Statistical Consulting
The major objective of $S C S$ is the provision of a staristical consulting service for rescarchers at SFU. Expericonce shows that consultations can vary greatly in length and complexity, from a onc-hour discussion of basic statistical concepts, to a collaborative research project. Furthermore, many kinds of expertise can be called for in consulcing, work; there may be demand for knowledgeable advice in such diverse areas as: design and analysis of experimencs, non-parametric methods, regression amalysis, sample survey design and analysis. time scrics analysis and multivariate analysis. Alsn, associated problems of data management may arise. lt should be the ultimate aim of the SC and the SCS to accommodate this entire range, to the extent that resources permit.

Coping with such a range of problems is beyond the scope of any single individual. A.clicnt should have available to him the services of a well-balanced team; ir is important that a sample survey expert should design surveys, and fhat an expert in the design and analysis of experiments should give advice in such matters. It is also important that a consultant be backed-up by other statisticians to whom he can turn for advice when difficult matters arise. Another requirement is that good statistical software and advice on the computer-processing of large data scts be available to the consultant. In addition, it is helpful if $g$ ood support staff is available to handle the routine aspects of consultations.

A SCS consulrant can be backed-up by the faculty members whose interosts and ahilitics cover the main areas of specialization in statistics and statistical computing. In addition, licse statisticians have the depth of training and expericrice ro enable them to fill lacunae in their coverige. Also, ihese statisticians are aware of developments on the natlonal and
international statistics and statistical conpurimi :ocnes. Each has connections with the outside statititic.al cum:untty which enables him to obtain sccond opinions on almost any matter concerning statistics and statistical computing. le would be a difficult and expensive maticr to duplicate chis expertise and chese conncetions.

According to the proposal, statistical consulting and statistical computing will be considered part of the training of M.Sc. students in Statistics, which suggests each graduate student will be asked to participate in the consulting and computing aspects of SCS. This can serve a dual role. first, students can be placed in an excellent learning environment. They can observe experienced consultants at work, thus gaining, firsthand, knowledge that is difficult to come by in any other way. Also they can learn to use the computer to analyze large data sets by working on problems requiring this knowledge and by having specialists close at hand who can give cogent advice when required. The sccond bencfit to accruc from having graduate students exposed to the consulting program is that they themselves can contribute to the program. In the beginning, before much learning has taken place, they can do necessary but routine jobs that otherwise would take up the time of experienced consultants. Later, as the graduate students gain confidence and experience, they can be asked to assume greater responsibilities in consultations. By graduation they should be competent consultants in their own right.

## C. Financial Considerations

The discussion above implics that as the SCS cvolves it may acquire more resources. 1 have several suggestions as to how these acquisitions may be financed. First, the SCS might apply for a NSERC Infrastructure Grant. Given the high quality of the statistical faculty and their applied interests, it seems entirely reasonable that such an application should be successful. Also, the SCS might consider applying for NSERC equipment grants to purchase such computing equipment as may not likel be available in a mathematics deparcment; in particular l have in mind graphics equipment. Another source of funds is the clients themselves. At western we try to charge all clients for consulting
time of faculty, staff and graduate students. Our coperifence is that most elients have rescarch funds that allow for such costs. Furthermore, graduate students who come for assistancefrom other departments usually have supervisors with financial resources sufficient to pay for the required assistance. However, we do not charge for initial consultations, and anyone who cannot afford our rates is provided nevertheless with service to the best of our abilities. We find that advice and work that is paid for often is bctter appreciated than that which is obtained free. It is my belief that statisticians in the SCS should not be modest about charging for their consulting services; what they have to offer is valuable, and the funds generated can be helpful in embellishing their programs.

IV Further Comments and Questions

1. The proposed new courses are important. However, it is not clear to me where students will obtain instruction in sample surveys, experimental design, and regression methods. $J$ assume statistical computing will be a significant part of Stat 811-0 and Stat 812-0.
2. Ocher courses which could be considered for addition to the program are: quality assurance sciences; survival analysis; forecasting; and operational research methods.
3. Will projects involve software development and/or implementation? Such projects can have residual bencfits for the SCS.
4. Will students be exposed to database management systems and to statistical computer graphics methods? Such exposure will be valuable for job-sceking purposes.
5. Taking students into the MSc program from such fields as Economics and Biology is commendable (see page 5). It might prove to be necessary to have them take a make-up semester to avoid unnecessary attrition in the probability and mathematical statistics courses.
