MEMORANDUM

Senate	From Office of the Dean of Graduate Studies
•••••	
Subject. New Graduate Courses - Cmpt 811-3,	DateNovember 12, 1986
812-3 and 813-3	

Action undertaken by the Senate Graduate Studies Committee, at its Meeting on November 10, 1986, gives rise to the following motion:

MOTION:

"That Senate approve and recommend approval to the Board of Governors, as set forth in \$.86-81 , the proposed new graduate courses:

> CMPT 811-3 Distributed Algorithms CMPT 812-3 Parallel Computation CMPT 813-3 Computational Geometry"

 $\langle \rangle$

S. 86-81

B.P. Clayman Dean of Graduate Studies.

mm/ attach.

MEMORANDUM

Marion McGinn,
Graduate Studies
 Registrar's Office
•••••••••••••••••••••••••••••••••••••••

Subject.....

BKB:rcw

Graduate Course Proposals

From. Binay K. Bhattacharya Director, Graduate Program School of Computing Science

Date. October 24, 1986

Please find enclosed 3 graduate course proposals (CMPT 811, CMPT 812, and CMPT 813) from the School of Computing Science to be incorporated in the 1987-88 Calendar.

m9

Binay K. Bhattacharya

New Graduate Course Proposal Form

CALENDAR INFO	RMATION:	
Department:	Computing Science	Course Number: 811
Title:	Distributed Algorithms	
Description:_	The course is primarily concerned wi	th distributed algorithms
that have	been proposed in recent years. Severa	l models of distributed
computing Credit Hours:	will be discussed. 3 Vector: 3-0	-0 Prerequisite(s) if any:
	·	
ENROLLMENT AN	D SCHEDULING:	
Estimated Enr	ollment: 10 When will the o	course first be offered: 87-3
How often wil	1 the course be offered: Annually o	r on demand.
	· · · · · · · · · · · · · · · · · · ·	
	•	
Distribute	 d computing is an important, recent day	elonment in Computing
	This source deals with the dealers 1	
	inis course deals with the design and	analysis of algorithms
in several	models of distributed computation.	
·		
RESOURCES:		
Which Faculty	member will normally teach the course	: Dr. A.L. Liestman. Dr. J.G. Peters
Thet are the	hudseters implications of mounting the	
what are the	budgetary implications of mounting the	course. None
Are there suf	ficient Library resources (append deta	ils): see attached
Appended: a) b) c)	Outline of the Course An indication of the competence of the Library resources	Faculty member to give the course.
Approved: De Fa Fa Se	partmental Graduate Studies Committee: culty Graduate Studies Committee: culty: nate Graduate Studies Committee:	Poinay & Phallad Date: 21/10/PL V Savage Date: 21 Oct '86 Date: QJ 24/Sch Date: 13 Nov Ba

Senate:

____Date:____

.

e T

CMPT 811 DISTRIBUTED ALGORITHMS

Course Outline

Week

1. Introduction to the models of distributed computing.

2. Election in unidirectional rings.

3. Election in bidirectional rings.

4. Election in complete networks.

5. Election - lower bounds.

6. Echo algorithms.

7. Minimum spanning tree algorithms.

8. Median finding/selection.

9. Ranking/sorting.

10. Adaptive algorithms.

11. Eventually connected networks.

12. Fail-safe protocols.

CMPT 811 - Library Requirements

There is, as yet, no text for this course. A survey has been prepared by Dr. A. Liestman and Dr. J. Peters and is available as a technical report (TR86-10) from The School of Computing Science (SFU). Copies will be supplied for the students.

Most of the papers discussed in class are current technical reports or papers in conference proceedings. Dr. Liestman and Dr. Peters have accumulated an extensive collection of these papers.

Relevant journal articles appear in recent issues of the following journals (all of which are available currently in the SFU library):

Networks J. Comput. Sys. Sci. Communications of the ACM IEEE Trans. Soft. Eng. IEEE Trans. Comp. IEEE Trans. Comm. IEEE Trans. Inf. Theory J. Algorithms ACM TOPLAS SIAM J. Comp. Journal of the ACM Th. Comp. Sci. Inf. Proc. Let.

CMPT 811

This course has been co-taught by Dr. A. L. Liestman and Dr. J. G. Peters as CMPT 881 (a special topics number) in 85-3 and 86-3. As a result of the 85-3 offering a survey of 73 relevant papers was issued as a technical report. In 86-3, the survey is being used as a text for the course with an additional 50 - 75 papers to be discussed. It is expected that an enlarged survey will be issued during 87-1.

Dr. Liestman's research interests include distributed algorithms, network communication processes, and graph algorithms. He recently supervised an M.Sc. thesis in the area of distributed algorithms.

Dr. Peters' research interests include distributed algorithms and parallel computation. He is currently supervising an M.Sc. thesis in the area of distributed algorithms.

New Graduate Course Proposal Form

CALENDAR INF	ORMATION:	
Department:	Computing Science	Course Number: 812
litle: Pa	arallel Computation	
Description:	The course is a theoretical tr	eatment of parallel complexity theory
concen	trating on algorithms and models.	
Credit Hours	:Vector	: <u>3-0-0</u> Prerequisite(s) if any:
ENROLLMENT A	ND SCHEDULING:	
Estimated En	rollment: <u>10</u> When will	the course first be offered: <u>88-1</u>
How often wi	11 the course be offered: Annual	ly or on demand.
JUSTIFICATIO	N:	
Paralle	 21 computation is a well-establis	ned and important area of Computing
Science	e that is currently covered in an	ad-hoc way in our graduate programme.
The cou	urse will concentrate on the desig	gn and analysis of parallel algorithms
(as opp	posed to parallel hardware).	
KESOURCES:	w work on will normally toget the	course: Dr. I. C. Detere
Which Facult	y member will normally teach the	course. <u>Dr. J. G. reters</u>
What are the	budgetary implications of mounti	ng the course: none
Are there su	fficient Library resources (appen	d details): Yes (see attached)
Appended: a) b) c)	Outline of the Course An indication of the competence Library resources	of the Faculty member to give the course.
Approved: D F F S	epartmental Graduate Studies Comm aculty Graduate Studies Committee aculty:	ittee: Ponoy K. Phallonate: 21 10 86 : MV Savage Date: 21 Oct 186 J. Slandon Date: 05 24/56 Date: 13 Mou/06

Date:

Senate:

CMPT 812 PARALLEL COMPUTATION

Course Outline

Week

1.	Overview of parallel computer architectures.
2.	Models of parallel computation.
3.	Relationships among parallel models.
4.	Parallel complexity hierarchies - NC and SC.
5.	Parallel prefix computation and applications.
6.	Tree traversals.
7.	Connected components and minimum spanning trees.
8.	Other parallel graph algorithms.
9.	Sorting.
10.	Parallel approximation alogrithms.
11.	Parallel matroid algorithms.

Convex hulls and triangulations. 12.

CMPT 812 Library Requirements

There is no suitable textbook for this course. Material will be taken from journal papers, conference papers, and technical reports. Dr. Peters will put copies of relevant conference papers and technical reports from his own collection into the reserve section of the library. Journal articles appear in recent issues of the following journals. All of these journals are currently available in the SFU library.

SIAM J. Comp. Journal of the ACM ACM TOPLAS Communications of the ACM J. Algorithms J. Comput. Sys. Sci. IEEE Trans. Computers IEEE Computer Theoretical Comp. Sci. Inf. Proc. Letters

CMPT 812

Some of the material in this course has been taught by Dr. J. G. Peters in 85-1 as CMPT 881 (a special topics number). The remainder of the material was taught by Dr. Peters in 86-1 as part of CMPT 881 which was taught jointly by Dr. Peters and Dr. A. L. Liestman.

Dr. Peters' research interests include parallel computation and distributed algorithms. He has supervised one M.Sc. thesis and is currently supervising a second M.Sc. thesis in the area of parallel computation.

New Graduate Course Proposal Form

CALENDAR INFORMATION:
Department: Computing Science Course Number: 813
Title: Computational Geometry
Description: This course is concerned with geometric algorithms that have
been proposed in recent years. Applications of these algorithms to various disciplines will also be discussed. Credit Hours: <u>3</u> Vector: <u>3-0-0</u> Prerequisite(s) if any: <u>CMPT</u> 4
ENROLLMENT AND SCHEDULING:
Estimated Enrollment: 10 When will the course first be offered: 87-3
How often will the course be offered: Anually or on demand
JUSTIFICATION:
In spite of the maturity that it has achieved, computational geometry
continues to be a fortile course of problems with relevance to second
Continues to be a fertile source of problems with relevance to several
fields such as CAD, VLSI Testing, Computer Graphics, Pattern Recognition,
and Robotics.
RESOURCES:
Which Faculty member will normally teach the course: Dr. B.K. Bhattacharya
What are the budgetary implications of mounting the course: None
Are there sufficient Library resources (append details): see attached
Appended: a) Outline of the Course b) An indication of the competence of the Faculty member to give the course. c) Library resources
Approved: Departmental Graduate Studies Committee: Annow Productionate: 21 10 Pf Faculty Graduate Studies Committee: M/ Javare Date: 21 Oct '86, Faculty: D.A. George for J. Souther Date: 00 24/56 Senate Graduate Studies Committee: D. Date: 13 Mov/Pe
Senate:ODate:

,

"

.

¥.

CMPT 813 COMPUTATIONAL GEOMETRY

Course Outline

- 1. Geometric searching.
- 2. Convex Hulls : Basic Algorithms.
- 3. Convex Hulls : Extensions and applications.
- 4. Proximity : Fundamental algorithms.
- 5. Proximity : Variants and generalizations.
- 6. Intersections.
- 7. The geometry of rectangles.

CMPT 813 - Library Requirements

There is no suitable textbook for this course. However, there are a few books on computational geometry which will be used as reference books. These books are:

- Computational Geometry An Introduction by F. P. Preparata and M. I. Shamps.
- Computational Geometry and Multi-Dimensional Searching by K. Melhorn.

Materials will be taken from journal papers, conference papers and technical reports. Dr. Bhattacharya has an extensive collection of papers. Copies of the relevant papers will be put in the reserve section of the library.

Relevant journal articles generally appear in the following journals (all of which are presently available in the SFU library):

Information Processing Letters BIT Communications of the ACM Journal of the ACM IEEE Trans. Computers IEEE Pattern Analysis & Machine Intelligence Journal of Algorithms Journal of Computer System Science SIAM Journal of Computing Computer Journal Computer Vision, Graphics and Image Processing Theoretical Computer Science

CMPT 813

Dr. Bhattacharya presently teaches the undergraduate version of Computational Geometry (CMPT 406). This is offered once a year. Graduate students of the School of Computing Science are allowed to take this course under special arrangements.

Dr. Bhattacharya obtained his doctorate degree in the area of Computational Geometry. His other research interests are in the area of Pattern Recognition, Robotics and Computer Graphics.

MEMORANDUM

Binay Bhattacharya	From Sharon Thomas,
Computing Science	Head, Collections Management
SubjectNEW COURSE PROPOSALS: CMPT 811, 812, 813	Date October 17, 1986

None of these courses should prove troublesome since, aside from the cited journals which are already in the collection, they will apparently make only minimal use of the Library's resources.

Sharon Ihome

ST:is

MEMORANDUM

DEPARTMENT OF MATHEMATICS AND STATISTICS

To: Dr. B.K. Bhattacharya : From: Dr. G. Bojadziev Chairman, Grad. Studies : Chairman Computing Science Graduate Studies : Math & Stats Dept. . 2 Re: Course Proposals : Date: October 24, 1986 2 2 2

I appreciate your memo of October 22, 1986 regarding the proposal of three graduate courses in computing Science: 811, 812 and 813. The courses are relevant and certainly Mathematics and Statistics Department approves the proposal.

GB/sh

P. Bojadziev