S.91-8

SIMON FRASER UNIVERSITY MEMORANDUM

TO: Senate
FROM: J. Munro Chair, Senate
Cttee on Academic Planning

SUBJECT: Graduate Curriculum Revisions - DATE: November 20, 1990 Faculty of Science

Action undertaken by the Senate Committee on Academic Planning and the Senate Graduate Studies Committee, gives rise to the following motion:

MOTION: "that Senate approve and recommend approval to the Board of Governors, as set forth in S.91-8 graduate curriculum revisions in the Faculty of Science as follows:
i) S.91-8a Department of Biological Sciences
ii) S.91-8b Department of Mathematics \& Statistics"

S.91-8a

Department of Biological Sciences Summary of Graduate Curriculum Revisions

SGSC Reference: Mtg. of April 9, 1990 and Mtg. of November 26, 1990
SCAP Reference: SCAP 90-67, SCAP 90-68

1. New courses - BISC 880-3, BISC 881-3, BISC 883-3, BISC 884-3, BISC 885-3, BISC 886-3, BISC 887-3, BISC 889-3
2. Deletion of BISC 802-3, BISC 840-3, BISC 853-3, BISC 854-3

SIMON FRASER UNIVERSITY
 MEMORANDUM

Our Department has proposed 8 new graduate courses in specific areas of Biological Sciences. These courses have been proposed due to Departmental initiatives over the last few months and in response to our latest External Review that stated there should be a greater variety of courses available to graduate students. These courses are labelled as Special Topics to allow flexibility. In succeeding semesters it will be possible to change the course content depending on the faculty member(s) giving the course and depending on what is more topical at the time.

In addition to these new courses the Department of Biological Sciences also wishes to retain its three graduate courses BISC 859,869 and 879. The Biological Sciences Department is large and diversified. Many faculty are seconded to other positions (e.g. Killam Research Fellowship, University Research Fellowships, Indonesian Project) Thus, many limited-term and sessional appointments are made. Also, there are many Postdoctoral Fellows, Visiting Faculty and Adjunct Professors. In order for our graduate students to have access to the areas of expertise for these many visitors, the Department offers specialized graduate courses on an irregular basis. The present Special Topics courses (BISC 859, 869 and 879) serve this function extremely well and we therefore wish to retain them.

BAM/mC

From...
Dept. of Biological Sciences
Date. October 10, 1990

CALENDAR INFORMATION:

Department: Biological Sciences
Course Number: 880-3
Title: \qquad
Description: \qquad ecology

ENROLLMENT AND SCHEDULING:

Estimated Enrollment: $10-15$
When will the course first be offered: \qquad
How often will the course be offered: as circumstances warrant (but no more than once per year)

JUSTIFICATION:

lii:: course would be useful in two general circumstances:
a) Li, try out a new course, prior to adding it to the regular curriculum;
(1) 1", allow liacult: sabbatical visitors, or faculty from other institutions to
write specialty courses on a onetime only basis

RESOURCES:

Which Faculty member will normally teach the course:Dill/llarestad/Roitberg/Verbeek/ Winston/ Ydenberg and visitors
What are the budgetary implications of mounting the course: None

```
Are there sufficient Library resources (append details): several additional journals are required (see attached memo to Sharon Thomas)
```


Appended: a) Out line of the Course

```
b) An indication of the competence of the Faculty member to give the course.
c) Library resources
```

Approved: Departmental Graduate Studies committee: /hun Date: 20 April 90 Faculty Graduate Studies committee: PWMPerue Date: 13 Sept 190 Faculty:_ AHW.Jones Date: 110 Go Senate Graduate Studies committee: Date: $2>\%$ Cou/kin Sonata.
nara.

SIM .. FRASER UNIVERSI:

MEMORANDUM

From..... L.M. DILL, DIRECTOR
GROUP, BIOSCIENCES

Dalc.....JANUARY 31, 1990

The Behavioural Ecology Research Group (B.E.R.G.) was formed in February, 1909, under the terms of Policy $\mathrm{AC}-35$, with the following objectives:

1. 'lo pursue basic research in the field of behavioural ecology;
2. 'ro maintain and further develop an internationally recognized training center for students in behavioural ecology, and related areas of inquiry;

- 3- Ho-provide a service to-government, industry and other-organizations so that basic and applied problems in behavioural ecology can be tackled through collaborative research.

The group consists of 8 faculty members from BioSciences, Archaeology and psychology, along with an active group of post-doctoral fellows and graduate students.

We have found our ability to meet our objectives somewhat limited by the unavailability in the SFU Library of several journals central to our discipline. 'lhe discipline is new, and so are many of its journals; presumably, they have not been added to the collection owing to the financial restraints of recent years.
Λ survey of BERG faculty has identified the following journals which should be added to the collection. Brochures describing some of them are attached (marked by *).

- American Journal of Primatology
- Behavior Processes
- Biotropica
- Ethology, Ecology and Evolution *
- Ethology and Sociobiology
- Functional Ecology . *
- International Journal of Primatology
- J. Evolutionary Biology
- J. Field Ornithology
- J. Insect Behavior
- 'lrends in Ecology and Evolution *

We hope that the current financial situation will allow upgrading of the l.ibrary': collection in our research area, and thank you for your attention to this joint request. please let me know if you need any further information.

New Graduate Course Proposal Form

CALENDAR INFORMATION:

ENROLLMENT AND SCHEDULING:

Estimated Enrollment: 12 When will the course first be offered: 1990-3

How often will the course be offered: Each semester, according to demand.

JUSTIFICATION:

Th: "ore will provide students with. a structured, in-depth analytical approach
(1) the literate: on selected topics. The capacity to present information and
l. . roitirally evaluate experiments will be emphasized as part of the development
wt a student's professional competence.

RESOURCES:

Which Faculty member will normally teach the course: Various members of the IMBB
What are the budgetary implications of mounting the course: Photocopies of 20-30
pares per week will be provided to each student.

Are there sufficient Library resources (append details):Yes. IMBB journal room will
fr. Hexed for most assigned articles.
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

Approved: Departmental Graduate Studies Committee: H/ he Faculty Graduate Studies Committee:
\qquad Date: 20 April 90. Date: \qquad Faculty: \qquad Date: 11 oct 90 Senate Graduate Studies Comitt'ee:
 Date:

Course Outline

Cell and Molecular Biology

The format and content of the course will depend on the selected topics and the instructors responsible for the course. In general, the course will require graduate students to prepare a written summary and lecture on their assigned topic. Each student will read assigned papers before each lecture, and will be expected to participate in discussions of the lecture material. Additional work (such as a term paper or research grant proposal) may be assigned as appropriate. During some semesters, the course will consider a specific topic in depth, while during others it will provide an overview of a number of areas of research front activity.

CALENDAR INFORMATION:

Description: Special topics course with emphasis on recent developments in
environmental toxicology.
Credit Hours: \qquad Vector: 3-0-0 Prerequisites) if any: None
\qquad

ENROLLMENT AND SCHEDULING:

Estimated Enrollment: 5-10 When will the course first be offered: 1991
How often will the course be offered: Once every two years or more frequently with
: foment demand.

JUSTIFICATION:

A! hough several advanced level courses in the environmental toxicology program
could be used as graduate program (M.Sc. and Ph.D.) course requirements, there
i:; no environmental toxicology graduate course per se in the Department. The
proposed course will meet the demand of the graduate students in this area.

RESOURCES:

Which Faculty member will normally teach the course: Environmental toxicology faculty, visiting professors, and local experts outside of SFU.
What are the budgetary implications of mounting the course: Minor travel costs for
outside experts.

Are there sufficient Library resources (append details): Yes
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

Approved: Departmental Graduate Studies Committee:
 Date: 20 April 90 Faculty Graduate Studies Committee: \qquad P. W. Percival Date: $13 \delta_{p p}+90$ Faculty: chtw. Son Senate Graduate Studies Committee:
 Date: 110 ot go Date: 22 How/Go.

CoURSE UUTILINE

883-3- SPPCCAI, TOPICS TN ENVIRONMENTAL TOXICOLOCY

l:Mifommentil toxicology is a rapidly changing, multidisciplinary science. 'Tle ohjorlive of the course is to keep graduate students abreast of the most poert. and imovative approaches and discoveries in this area. Topics such at: toxir watte disposal industrial toxic waste ahatement, health risk atsicssment, enviromental legislation, biochemical toxicology, wildife loxicology, toxicokinetics, inhalation toxicology, etc., could be included in the controe.

The courtw will he co-ordinated by a faculty member. It will follow a lecture/seminar format. Lectures and seminars will be presented by a group of expert:s and scientists. Presentation of seminars by students is also racoourared.

CALANDAR INFORMATION:

Depertwent: Biological Sciences Course Number: 884-3
Title:
SPBCTAL TOPICS IN PEST ECOLOGY AND MANAGEMENT I
Description: A specific topic in the field of pest ecology and management, not otherwise covered in depth in regularly scheduled courses.

Credit Hours: 3

Vector: 3-0-0 Prerequisite(s) if any: \qquad

ENROLLMENT AND SCHEDULING:

Estimated Enrollment: $5-20$ When will the course first be offered: 1990-3
How often will the course be offered: As required by student demand.

JUSTIFICATION:

The course will cover new and specialized topics that cannot be offered by faculty on a regular basis.

RFSSOURCES:

Which Faculty member will normally teach the course:Faculty and Adjunct Professors in Centre for Pest Management.
What are the budgetary implications of mounting the course: None

Are there sufficient Library resources (append details): Yes
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

884-3 - SPECIAL TOPICS IN PEST ECOLOGY AND MANAGEMENT

Course objectives:

The objective of the course is to provide graduate students with an in-depth analysis of a topic in pest ecology and management. The course content will change from year to year to reflect student interests and topical research.

Course format:

This course will follow a lecture/seminar format. In general, the course will require graduate students to prepare a written summary and to give a seminar on their assigned topic. Each student will read assigned papers before each lecture, and will be expected to participate in discussions of the lecture material.
Additional work (such as a term paper or research grant proposal) may be assigned as appropriate. During some semesters, the course will consider a specific topic in depth, while during others it will provide an overview of a number of areas of research front activity.

Student evaluation:

Seminar and essay.

New Graduate Course rroposal rorm

CALENDAR INFORMATION:

ENROLLMENT AND SCHEDULING:
Estimated Enrollment: 5-10 When will the course first be offered: 1990-3
How often will the course be offered: Once per year

JUSTIFICATION:

1. Large increases in physiologically oriented graduate students.
2. Very tew physiological courses, all of which are specialized.

RESOURCES:

Which Faculty member will normally teach the course: Team taught: Dr. Belton, Dr. Burr, Dr. Fankhoner, Dr. Farrell, Dr. Haunerland, Dr. McKeown, Dr. Nair.
What are the budgetary implications of mounting the course: Faculty time and space. I!ivited speakers.

Are there sufficient Library resources (append details): Yes - current SFU held journals and inturlimary loan.
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

885-3- SPECIAL TOPICS IN ANIMAL PHYSIOLOGY

Iomrse obivertives:
'lo hring at larlicular group of students to an understanding of the functional mrיhanism: and adaptations in animals. The course content will change from

 l'口um fitculi.y input and the independent reading by the students, an effort will be made lo give the students an appreciation for general physiological frinciples and their scope and position in many contemporary physiological fiolds.
(ontrese trormat:
Hhi:s cours: will follow a lecture/seminar format. Λ number of faculty will lu. involvoll will this course per offeririg and will introduce the topics for llat warlicular term with lectures_in_their_field_ofexpertise. The_latter half of the collose will involve the enrolled students presenting seminars on : imilar or relalied topics to the lectures. The students will also have to write an essaiy on their seminar topics.

Itudent evaluation:
: ieminar and esssay.

New Graduate Course Proposal Form

CALENDAR INFORMATION:

Department: B1OLOGICAI SCIENCES
Course Number: 886-3
Title: SPP:CIAL 'FOPTCS IN MARINE AND AQUATIC BIOLOGY
Description: Special topics course emphasising recent developments in the area of aquatic and marine biology

Credit Hours:_ $3 \quad$ Vector: 3-0-0_ Prerequisite (s) if any: None
\qquad
ENROLLMENT AND SCHEDULING:
Estimated Enrollment: $5-10$ When will the course first be offered: 1991-1
How often will the course be offered: Once a year

JUSTIFICATION:
l: whenalal sones has a large and expanding group of faculty involved in aquatic
amd marine research. Their graduate students require a continuing graduate course in
this: area:

RESOURCES:
Which Faculty member will normally teach the course: Faculty in marine and aquatic biology
What are the budgetary implications of mounting the course: Minor book purchases to keep curet with literature. Invited speakers.

Are there sufficient Library resources (append details): Current reference. material and inl...lihrary loams moquate. Textbooks seem adequate at this time.
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

886-3- SPPCIAL FOPTCS IN MARINE AND AQUATIC BIOLOGY

I'his courso will provide the student with in-depth analyses of contemporary literature in specific research areas of marine and aquatic biology. The :opeific lopics for a given semester will reflect the broad interests of facilly in marine and aquatic biology.

The sperial topics course will rollow a lecture/seminar format. Faculty iml invitul speakers will introduce selected topics with lectures at the :tart of the course. Students will present a series of seminars on related lopics and will perform independent literature research and submit an essay.

New Graduate Course Proposal form

CALENDAR INFORMATION:

Credit Hours: 3 Vector:_____ Prerequisite (s) if any: None

ENROLLMENT AND SCHEDULING:

Estimated Enrollment: $5-15$ When will the course first be offered: 1991-1
How often will the course be offered: Two out of three semesters or as required.

JUSTIFICATION:

There are limited ways in the current. calendar for Biological Sciences to offer
graduate level courses on contemporary issues and specialized areas in plant
biology. This course will enable the plant biologists to offer a range of
special topics from year to year to meet challenging interests in plant biology.

RESOURCES:

Which Faculty member will normally teach the course: Any/all plant biologists
What are the budgetary implications of mounting the course: None

Are there sufficient Library resources (append details): \qquad
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

Approved: Departmental Graduate Studies Committee:

COURSE OUTLINE

This course will develop and investigate specialized areas in plant biology of current significance. Instruction may consist of lectures, seminars and discussion, or laboratory/field projects which are appropriate to the particular course theme. Emphasis in the course will help students gain knowledge and expertise which will recognize their individual scholarly objectives.

CALENDAR INFORMATION:

Department: \qquad BIOMOGJCNL SCIENCES Course Number: $88^{\prime} 9-3$

Title:
DIRECTED RE:NDINC
Description: $\frac{\text { Intended to cover the same ground as a normal graduate course, it may be }}{\begin{array}{l}\text { given to one or } \\ \text { inappropriate. }\end{array} \quad \text {. } \quad \text { students where the lecture/seminar procedure is }}$

ENROILLMENT AND SCHEDULING:
Estimated Enrollment: 1-3 When will the course first be offered: 1990

How often will the course be offered: When required

JUSTIFICATION:

A comuse is; reduired lo meet deficiencies in the background or the special needs of all. ur a few slindentis.

RESOURCES:

Which Faculty member will normally teach the course: Any
What are the budgetary implications of mounting the course: Negligible, some pllotocopying may he needed.

Are there sufficient Library resources (append details) : Yes, the course wiould_nat be l:u!!ll mulo:s: farully or library had material.
Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

COURSE OHIIINE:

889-3 - DIBHCTED RFADJNG
nciSC will maintain standards for directed reading courses.

Reqular meetings would normally be required hetween instructor and students to set up the reading assignments and monitor progress.

At: least two essays or term papers would be required for evaluation and copies would be retained by the Department.

SIMON FRASER UNIVERSITY
 MEMORANDUM

To......Dr. Percival, Chairman, Faculty 	
Subject. 800-level courses	Date...19........... 1990

The Department at the 29 November 1990 meeting agreed to drop the following 800-level courses from the graduate calendar:

BISC 802 - Genetics
BISC 8110 - Analyses of Insect Pest Situations

BISC 853 - Plant Disease Vectors
BISC 854 - Plant Pathosystems

MJS: adj

Department of Mathematics and Statistics Summary of Graduate Curriculum Revisions

SGSC Reference: Mtg. of November 26, 1990

SCAP Reference: SCAP 90-69

1. Revision to the Ph.D. Requirements
2. Inclusion of a separate entry for Statistics in the graduate Calendar
3. Change of course number MATH 850 renumbered MATH 920
MATH 851 renumbered MATH 921
MATH 852 renumbered MATH 922
MATH 853 renumbered MATH 923
MATH 855 renumbered MATH 929
MATH 885 renumbered MATH 960
MATH 886 renumbered MATH 961
MATH 887 renumbered MATH 964
MATH 888 renumbered MATH 965
4. Change of course number and title -

MATH 842 renumbered MATH 910 Ordinary Differential Equations
MATH 845 renumbered MATH 912 Partial Differential Equations
MATH 881 renumbered MATH 948 Continuum Mechanics
MATH 889 renumbered MATH 990 Selected Topics in Applied Mathematics
MATH 890 renumbered MATH 945 Plasticity
5. Deletion of MATH 838-4, MATH 843-4, MATH 846-4, MATH 882-4, MATH $883-$ 4, MATH 884-4, MATH 891-4, MATH 892-4, MATH 893-4
6. New Courses - MATH 900-4, MATH 901-4, MATH 902-4, MATH 905-4, MATH 930-4, MATH 934-4, MATH 935-4, MATH 939-4, MATH 940-4, MATH 950-4
7. Change of title - MATH 833-4
8. Revisions to the Applied and Computational Mathematics Program including the introduction of a project option at the Master's Level.

To: Dr. Paul Percival Chairman, Faculty of Science Graduate Program Committee

I am hereby seeking approval for a number of changes to the graduate program of the Department of Mathematics and Statistics. In summary the changes proposed are:
(I) Revision of the regulations for the Ph.D., in particular, those concerning the General Examination.
(II) Inclusion of a separate entry for statistics in the graduate calendar.
(III) Revision and renumbering of those graduate courses which have been grouped together under the heading "Applied and Computational Mathematics".
(IV) Substitution of: Math 833-4 Analysis: Selected Topics for Math 833-4 Real Analysis: Selected Topics.
(V) Identification of graduate programs in Applied and Computational Mathematics and separate entry for Applied and Computational Mathematics in the graduate calendar.

Details of the proposed changes are included in five separate sections below.

GUIDE TO REST OF THE DOCUMENT

Page (s)
I. Ph.D. regulations 3
II. Graduate calendar entry for Statistics 5
III. Course revision and new courses 9
IV. Course substitution 13
V. Graduate calendar entry for Applied 14 and Computational Mathematics

Appendix A. New course proposal forms.
Appendix B. Graduate calendar entry for Department of Mathematics and Statistics

I. Changes to the Ph.D. Requirements.
It is proposed that the first two paragraphs under the heading Ph.D. Program on page 271 of the Calendar, namely

A candidfate for the Ph.D. degree will generally be required to obtain at least 28 hours of credit for course work beyond courses taken for the Bachelor's cogree. Oflhese 28 hours, at least 16 are to be in graduate courses or graduate seminars and the remaining 12 may be chosen from graduate courses or graduate seminars or 400 level undergraduate courses. Students who hold an M.Sc. in Mathematics or Slatistics are deemed to have earned 12 of the 16 graduate hours and 8 of the 12 undergraduate or graduate hours required. The course work in all cases will involve study in at least four different areas of Mathematics, at least one of these areas being in.Analysis-(Applied, Complex or Real). Applied Analysis is understood to include Differential and Integral Equations and Methods of Applied Mathematics.
Candidates for the Ph.D. degree will normally be required to pass a general examination. At the option of the Candidate's Committee, this shall consist of either written papers in four areas of study, or written papers in three areas of study, and graduate course work in an approved fourth area in which a grade of B or higher is oblained. In either case, one of the written exam areas must be in Analysis (Applied, Complex or Real). A candidate ordinarily will not be allowed to take the general examination more than twice. Students will be interviewed and advised regarding appropriate courses and examination curricula. Course programs and examination programs require departmental approval.
be replaced by:
A candidate for the in. n. dertree will yenerally be reruired lo ohtain at leart: ? h homes or crajil fur courre wort: beyond coursons latien for Lhe bachelor's dorirece of

 gradmate coufses or graduate seminare or ano level
 Malhematice or atatistice are dremed lon have carmod 12 o the 16 diaduate hours and n of the 12 underybaduate of graduate howrs required. The course wort: in all coses wil involve stuly in at least 1 difrefent areas or Malhomatias nom/or atntistics.

Candidales for the ph. C . Jegren will normally be required to pass a General Eximmination. Tho Gencxal Examination will consist of examinations in lhece areas. The areast selected rof a mavticular candidale ire sulrject lo approval by the supervisoly Committe and lhe giaduate Gtudires Commiltec. In a qiven mion the examimitions mat be writlen or oral at the ontion of the Gradmatn atudines
 tate the licheral lixaminalion more than twice. students wij) loe intinrvinwed abd indvised regarding apmopriate coutace anm examjnillom curricula.

Rationale.

(i) The requirement that each candidate study Applied, Complex, or Real Analysis is being dropped. The growing strength of subdisciplines for which the requirement seems inappropriate has made it a nuisance in recent years.
(ii) The fourth area requirement in the General Examination has been dropped since it could be satisfied by course work and has had negligible impact.
(iii) The format of the General Examination is being changed to allow oral examinations instead of written ones. This will allow us greater flexibility.
II. Statistics entry in the Graduate Calendar.

It is proposed that the following entry be placed in the graduate calendar to give more emphasis to the graduate program in Statistics.

Statistics Program*

Location: 10512 Shrum Science Centre
Telephone: 291-3331
Chair: A.R. Freedman, A.B. (Calif.), PhD. (Oregon State)

The program in statistics is one of the graduate programs offered by the Department of Mathematics and Statistics.

FACULTY AND AREAS OF RESEARCH
C. Dean Discrete and lifetime data, extra-Poisson
D. Eaves
R. Lockhart
R. Routledge variation.
Biometrics, generalized linear modelling, theory of inference.
Goodness-of-fit testing, inference on stochastic processes, large sample theory.
Biometrics, estimating the sizes of animal populations.
M. Stephens

Goodness-of-fit testing and directional data.
T. Swartz
C. Villegas

Statistical computing, theory of inference.
K.L. Weldon Foundations of Bayesian inference.
Cross sectional sampling, statistical consulting.

Adjunct Professor
J. Cook Applications to the forest industry.

[^0]

Admission

For admission requirements, refer to the Graduate General Regulations.

Applicants are normally required to submit scores in the aptitude section of the Graduate Record Examinations of the Educational Testing Service. Applicants whose first language is not English will normally be asked to submit TOEFL results.

Applicants with degrees in areas other than statistics are encouraged to apply provided they have some formal training in statistical theory and practice.

Degree Requirements for M. Sc. and Ph.D.

M. Sc. Program

The program is intended to give students instruction in a wide range of statistical techniques and also to provide experience in the practical application of statistics. The program should be of interest to students who wish to acquire statistical expertise in preparation for a career in either theoretical or applied statistics.

Students in the program will be required:

- To complete at least 28 semester hours of credit for course work in Statistics and related fields beyond courses taken for the Bachelor's degree. Of these 28 hours, at least 20 are to be in graduate courses or graduate seminars, and the remaining 8 may be chosen from graduate or graduate seminars or 400 level undergraduate courses. Normally these courses will include STAT 801-4 (Mathematical Statistics) and at least four of STAT 802-4 (Multivariate Analysis), STAT 803-4 (Data Analysis), STAT 804-4 (Time Series Analysis), STAT 805-4 (Nonparametric Statistics and Discrete Data Analysis), and MATH 871-4 (Applied Probability Models).
- To complete satisfactorily STAT 811-0 (Statistical Consulting I) and STAT 812-0 (Statistical Consulting II).
- To submit and defend successfully a project (as outlined in the Graduate General Regulations) based on some problem of statistical analysis. This problem will ordinarily arise out of the statistical consulting service.

Students with backgrounds in other disciplines, or with an inadequate background in statistics, may be required to
take certain undergraduate courses in the department in addition to the above requirements.

Ph.D. Program

A candidate for the Phi. degree will generally be required to obtain at least 28 hours of credit for course work beyond courses taken for the Bachelor's degree. Of these 28 hours, at least 16 are to be in graduate courses or graduate seminars and the remaining 12 may be chosen from graduate courses or graduate seminars or 400 level undergraduate courses. Students who hold an M. Sc. in Statistics are deemed to have earned 12 of the 16 graduate hours and 8 of the 12 undergraduate or graduate hours required. The-course-work-in-al-l-cases-wi-l-i-nvolve-study in at least 4 different areas of Statistics and Probability.

Candidates for the Phi. degree will normally be required to pass a General Examination. The General Examination will consist of examinations in three areas. The areas selected for a particular candidate are subject to approval by the Supervisory Committee and the Graduate Studies Committee. In a given area the examinations may be written or oral at the option of the Graduate Studies Committee. A candidate ordinarily will not be allowed to take the General Examination more than twice. Students will be interviewed and advised regarding appropriate courses and examination curricula.

Students who have completed a Master's degree will normally be required to attempt the general examination within one year of their initial registration in the Ph.D. program.

A candidate for the Ph.D. may be required by his/her Supervisory Committee to acquire proficiency in reading statistical papers in either French, German or Russian.

Students will be required to submit and successfully defend a thesis which will embody a significant contribution to statistical knowledge.

For further information and regulations refer to the Graduate General Regulations section.

Traduate Courses

STAT 602-3 Generalized Lineor and Non-linear Modelling A mothods-oriented unified approach to a broad array of nonlinear rogression modelling mothods including classical regression, logistic rogression, probit analysis, dilution assay. frequoncy count analysis, ordinal-lyperesponsos, and survival data. A project will be assigned related in students' field of sludy. Prerequisile: STAT 302 or 330 or permission of insfructor. Open only to graduate sludents in departments olher llan Mallomatics and Slatislics.

STAT 650-5 Quanlilallvo Analyais In Rosourco Managoment and Flold Blology

The use of stallsilical techniquos and malhematical models in resource management with special emphasis on experimentation, survey lechniques, and slallsilcal model construcllon. (5-0-0) Proroquisile: ^ coursa in parametric and non-parametric statistics. This courso may not be used for llin satisfaction of degree requiroments in the Doparfment of Mallhomatlcs arid Statistics.

STAT 801-4 Malhematical Statislics

Advanced malhemalical slatislics. A survey of basic concepts in point estimation, interval estimation and hypothosis testing. Principles of inference. Studonls will credil forMATH075-4 maynoltako STAT 001-4 for furlhor crodif.

STAT 602-4 Mullivarlate Analysis

An advanced course in Mullivariate Analysis. Factor analysis, discriminant analysis, principal compononts, canonical correlations. Multivariato regrossion and analysis of variance. Sludents will credil for MATH 076-4 may nol lake STAT $802-4$ for furtier credil.
STAT 803-4 Data Analysis
A problem-based course emphasizing the oxploratory aspocts of statistical analysis with emphasis on modern computer-oriented melhods. Prerequisites: MATH 472 or equivalent or permission of the instructor.

STAT 804-4 Time Serlob Analysis

Anintroduction to time sories modols and their analysis. Bolh time-domain and Prequency-domain lechniques will be sludiod. Prerequlsilos: MATH 472 or equivalent or permission of lhe insiructor.
STAT 005-4 Non-Paramelric Stallsilcs and Discreto Data A.nalysis Order stalistics, rank stalislics, procedures based on the empirical distribution funclion. Asymplolic officiencios. Goodness-ol-fit. Conlingency tablos, loglinear models. Further lopics. Proroquistles: MATH 372 and 473 or oquivalont or permission of the instructor.

STAT B11-0 Stallslical Consulting I

Students will parliclpate in the deparlment statistical consulling service under the direclion of facully members. This course will be graded on a salisfactory/ unsalisfactory basis. Open to M. Sc. and Ph.D. sludonts In Statistics.

STAT 812-0 Slalisilical Consulling II

Studenta will parlicipato in tho departmont statislical consulling servico under tho dirncllon of faculty mombors. This courso is gradod on a salisfactory/ unsallafacluy banals. Opon fo M. Sc. and Ph.D. sludonts In Sialistics.

STAT

090-4
Sinllatica: Selected Toplce

See also Math 800-899 listed under Department of Mathematics and Statistics on page $x x$ and Math 900-990 listed under Applied and Computational Mathematics Program on page $x x$.

Rationale: In recent years the Statistics group within the Department of Mathematics and Statistics has grown and there has been a sharp increase in the number of graduate students working in statistics. In many universities there are separate Departments of Statistics. The separate calendar entry is merited by the acknowledged status of Statistics as a separate discipline.

It should be noted that there is no question here of a new program being introduced. The calendar description corresponds exactly to what has been going on for a number of years as part of the graduate program of the Department of Mathematics and Statistics.

III. Revision of graduate course offerings in applied mathematics and numerical analysis.

(i) The courses numbered $850,851,852,853,855,885$, 886, 887,888 are to be renumbered with the same title to 920, $921,922,923,929,960,961,964,965$ respectively.
(ii) The courses $842,845,881,889,890$ are to be renumbered and retitled according to:

Math 842-4 Ordinary Differential Equations I
Math 845-4 Partial Differential Equations I
Math 881-4 Continuum Mechanics I
Math 889-4 Applied Mathematics: Selected Topics
Math 890-4 Plasticity I
become
Math 910-4 Ordinary Differential Equations
Math 912-4 Partial Differential Equations
Math 948-4 Continuum Mechanics
Math 990-4 Selected Topics in Applied Mathematics
Math 945-4 Plasticity
(iii) The courses

Math 838-4 Complex Analysis: Selected Topics
Math 843-4 Ordinary Differential Equations II
Math 846-4 Partial Differential Equations II
Math 882-4 Continuum Mechanics II
Math 883-4 Elasticity I
Math 884-4 Elasticity II
Math 891-4 Plasticity II
Math 892-4 Elasticity: Selected Topics
Math 893-4 General Relativity: Selected Topics
are to be deleted and the following new courses are to be introduced:

Math 900-4 Advanced Mathematical Methods I
Math 901-4 Advanced Mathematical Methods II
Math 902-4 Applied Complex Analysis
Math 905-4 Applied Functional Analysis
Math 930-4 Fluid Dynamics
Math 934-4 Selected Topics in Fluid Dynamics
Math 935-4 Mechanics of Solids
Math 939-4 Selected Topics in Mechanics of Solids
Math 940-4 Mathematical Elasticity
Math 950-4 Tensor Analysis on Differentiable Manifolds

The calendar descriptions for the new courses and suggested texts are as follows:

Math 900-4 Advanced Mathematical Methods I Hilbert spaces. Calculus of variations. Sturm-Liouville problems and special functions. Green's functions in one dimension. Integral equations. Prerequisite: Math 314-3 or equivalent. Math 419-3 is recommended.
[Based on Chapters 1-6 of Mathematical Methods in Physics \& Engineering by J.W. Dettman (McGraw-Hill).]

Math 901-4 Advanced Mathematical Methods II First order partial_differential_equations. Characteristics. Eigenfunction expansions and integral transforms. Discontinuities and singularities; weak solutions. Green's functions. Variational methods. Prerequisite: Math 314-3 or equivalent. Math 418-3 is recommended.
[Based on Chapters 2-8 of Partial Differential Equations of Applied Mathematics by E. Zauderer (Wiley) (Excluding Sections 4.7, 5.7, 8.5).]

Math 902-4 Applied Complex Analysis
Review of complex power series and contour integration. Conformal mapping, Schwartz-Christoffel transformation. Special functions. Asymptotic expansions. Integral transforms. Prerequisite: Math 322-3 or equivalent.
[Based on Chapters 1-7 of Functions of a Complex Variable: theory and technique by Carrier, Grok \& Pearson.]

Math 905-4 Applied Functional Analysis
Infinite dimensional vector spaces, convergence, generalized Fourier series. Operator theory; the Fredholm alternative. Application to integral equations and Sturm-Liouville systems. Spectral theory. Prerequisite: Math 900-4 or permission of the instructor.
[Based on Chapters 4-7 of Greens functions and boundaryvalue problems by Stakgold.]

Math 930-4 Fluid Dynamics
Basic equations and theorems of fluid mechanics. Incompressible flow. Compressible flow. Effects of viscosity. Prerequisite: Math 361-3 or equivalent. Math 462-3 is recommended.
[Based on Chapters 1-7 of Fluid Mechanics by C.S. Yin, West River Press (1988).]

Math 934-4 Selected Topics in Fluid Dynamics Study of a specialized area of fluid dynamics such as hydrodynamic stability, multiphase flow, non-Newtonian fluids, computational fluid dynamics, boundary-layer theory, magnetic fluids and plasmas, bio-and geo- fluid mechanics, gas dynamics. Prerequisite: Math 930-4 or permission of the instructor.

Math 935-4 Mechanics of Solids

Analysis of stress and strain. Conservation laws. Elastic and plastic material behaviour. Two- and three-dimensional elasticity. Variational principles. Wave propagation. Prerequisite: Math 361-3 or equivalent. Math 468-3 is recommended. Students with credit for Math 883-4 may not take Math 935-4 for further credit.
[Based on Chapters 1-11 of Solid Mechanics by Y.C. Fund, Prentice-Hall.]

Math 939-4 selected Topics in the Mechanics of Solids Study of a specialized area of the mechanics of solids such as composite materials, micromechanics, fracture, plate and shell theory, creep, computational solid mechanics, wave propagation, contact mechanics. Prerequisite: Math 935-4 or permission of the instructor.

Math 940-4 Mathematical Elasticity
Analysis of deformation and motion. Balance laws, stress and field equations. Cauchy and Green elastic materials. Boundary-value problems. Incremental elastic deformations. Elastic properties of solid materials. Prerequisite: Math 935-4 or permission of the instructor.
[Based on Chapters 1-7 of Non-Linear Elastic Deformations by R.W. Ogden.]

Math 950-4 Tensor Analysis on a Differentiable Manifold A first graduate course dealing with the following topics: Tensor Algebra, tensor fields on differentiable manifolds, differential forms, invariant problems in the calculus of variation, metric field theory and Einstein's equations. Prerequisite: Math 466-4 or permission of the instructor.
[Based on: Tensors, Differential forms \& Variational Principles by D. Lovelock \& H. Rung (J. Wiley) 1975 ISBN -0-471 - 54840-5.]

[^1]Rationale. The proposed course changes have been prompted by the desire of faculty members working in mechanics, numerical analysis, and related fields to offer a more coherent program for students wishing to complete graduate degrees with concentration in

Applied and Computational Mathematics The subjects grouped under the heading include applied analysis, differential equations, numerical analysis, mechanics, fluid dynamics and mathematical physics.

The existing schedule of graduate courses was devised before the Department had any expertise in numerical analysis. Since the importance of numerical methods has been steadily -increasing over-the last-two decades,-revising-our course offerings to take account of the new context is highly desirable.

The addition of Math 905-4 Applied Functional Analysis is also necessary to bring our course offerings up to date. We note that the External Review Committee which visited the Department in 1989 was of the opinion that our course offerings in Functional Analysis are not enough.

Another important element in the overall revision is the introduction of two courses in fluid dynamics. Until now courses in fluid dynamics have had to be offered under a selected topics number which hardly does the subject justice.

All the courses involved in the revision are being given 900-numbers so that collectively the courses will be more easily recognized.
(IV) Substitution of: Math 833-4 Analysis: Selected Topics for Math 833-4 Real Analysis: selected Topics.

Rationale. As part of the revisions described in (III) above, Math 838-4 Complex Analysis: Selected Topics has been deleted. We would like to retain the option of mounting a selected topics course in Complex Analysis by changing the title of Math 833.

This change is contingent on the approval of the changes described in III.

(V) Graduate calendar entry for Applied and Computational Mathematics.
 It is proposed that the following entry be placed in the graduate calendar to give an appropriate emphasis to what the Department has to offer M.Sc. and Ph.D. students interested in these areas:

Applied and Computational Mathematics Program*

Location: 10512 Shrum Science Centre
Telephone: 291-3331

```
Chair: A.R. Freedman, A.B. (Calif.),
    Ph.D. (Oregon State)
```

The Program in Applied and Computational Mathematics is one of the graduate programs offered by the Department of Mathematics and Statistics.

FACULTY AND AREAS OF RESEARCH
G.N. Bojadziev
A. Dis
G.A.C. Graham
R.W. Lardner
E. Pechlaner
R.D. Russell
D.L. Sharma
C.Y. Shen
E.M. Shoemaker
M. Singh
T. Tang
M. Trimmer

Differential equations; population dynamics, controlled dynamics
Variational techniques; interior solutions in general relativity
Analytical and computational methods in viscoelastic fracture and contact mechanics
Computational fluid dynamics: oceanography, asymptotic methods, nonlinear waves
Relativistic continuum mechanics: approximation methods, self-similar spinning rods
Numerical analysis: numerical solution of differential equations, dynamical systems
Boundary value problems in elasticity and fluid dynamics
Electromagnetic scattering; large-scale scientific computing
Environmental mathematics: glaciology. Plasticity
Nonlinear fluid and solid mechanics: magnetohydrodynamics
Fluid dynamics; numerical analysis Numerical analysis: differential equations, integral equations

[^2]
Admission

For admission requirements, refer to the Graduate General Regulations.

Applicants are normally required to submit scores in the aptitude section and an appropriate advanced section of the Graduate Record Examinations of the Educational Testing Service.

Applicants with backgrounds in areas other than mathematics, for example, a Bachelor's degree or its equivalent in Engineering or Physics may be considered suitably prepared for these programs.

DEGREE REQUIREMENTS FOR M. SC. AND PH.D.

M.8c. Program

A candidate for the M.Sc. degree will normally be required to obtain a total of 28 semester hours of credit for course work beyond courses taken for the Bachelor's degree. These 28 hours will consist of a core program containing the six courses listed below together with a further four hours of credit which may be at the graduate level or at the 400 undergraduate level. The six core courses are

Math 900-4 Advanced Mathematical Methods I
Math 901-4 Advanced Mathematical Methods II
Math 920-4 Numerical Linear Algebra
Math 922-4 Numerical Solution of Partial Differential Equations
Math 930-4 Fluid Dynamics
Math 935-4 Mechanics of Solids
In addition to this course requirement the student will be required to complete a project which will normally involve a significant computational component and to submit and successfully defend a report on that project. This project is intended to be completed within about one semester.

Ph.D. Program

A candidate for the Phi. degree will be required to obtain at least a further 8 semester hours of credit for course work in graduate level courses beyond the requirements for the M.Sc. degree. Candidates who are admitted to the Phi. program without completing an M. Sc. degree will be required to obtain credit or transfer credit for an amount of coursework equivalent to that obtained by students who first complete an M.Sc. degree.

Candidates for the Ph.D. will normally be required to pass a General Examination which will cover the subjects treated in the six core courses listed in the M.Sc. requirements. A candidate ordinarily will not be allowed to take the General Examination more than twice. Students who have completed a Master's degree will normally be required to attempt the General Examination within one year of their initial registration in the Ph.D. program.

A candidate for the Ph.D. degree will be required to submit and defend a thesis based on his or her own original work and which will embody a significant contribution to mathematical knowledge.

Graduate Courses

Math 900-4 Advanced Mathematical Methods I

Hilbert spaces. Calculus of variations. Sturm-Liouville problems and special functions. Green's functions in one dimension. Integral equations. Prerequisite: Math 314-3 or equivalent. Math 419-3 is recommended.

Math 901-4 Advanced Mathematical Methods II First order partial differential equations. Characteristics. Eigenfunction expansions and integral transforms. Discontinuities and singularities; weak solutions. Green's functions. Variational methods. Prerequisite: Math 314-3 or equivalent. Math 418-3 is recommended.

Math 902-4 Applied Complex Analysis Review of complex power series and contour integration. Conformal mapping, Schwartz-Christoffel transformation. Special functions. Asymptotic expansions. Integral transforms. Prerequisite: Math 322-3 or equivalent. Students with credit for Math 836-4 may not take Math 902-4 for further credit.

Math 905-4 Applied Functional Analysis

 Infinite dimensional vector spaces, convergence, generalized Fourier series. Operator theory; the Fredholm alternative. Application to integral equations and sturm-Liouville systems. Spectral theory. Prerequisite: Math 900-4 or permission of the instructor.
Math 910-4 Ordinary Differential Equations

The solutions and properties of ordinary differential equations and systems of ordinary differential equations in the real and complex domains. Prerequisite: Math 415-3 or equivalent. Students with credit for Math 842-4 may not take Math 910-4 for further credit.

Math 912-4 Partial Differential Equations

An advanced course on partial differential equations. Topics covered usually will include quasi-linear first order systems and hyperbolic, parabolic and elliptic second-order equations. Prerequisite: Math 901-4 or permission of the instructor. Students with credit for Math 845-4 may not take Math 912-4 for further credit.

Math 920-4 Numerical Linear Algebra
Direct and iterative methods for the numerical solution of linear systems, factorization techniques, linear least squares problems, eigenvalue problems. Techniques for parallel architectures. Prerequisite: Students with credit for Math 850-4 may not take Math 920-4 for further credit.

Math 921-4 Numerical Solution of Ordinary Differential Equations
Study of the practical numerical methods for solving initial and boundary value problems for ordinary differential equations. Prerequisite: Students with credit for Math 851-4 may not take math 921-4 for further credit.

Math 922-4 Numerical Solution of Partial Differential Equations
Analysis and application of numerical methods for solving partial differential equations. Finite difference methods, spectral methods, multigrid methods. Prerequisite: Students with credit for Math 852-4 may not take Math 922-4 for further credit.

Math 923-4 Numerical Methods in Continuous Optimization Numerical solution of systems of nonlinear equations, and unconstrained optimization problems. Newton's method, Quasi-Newton methods, secant methods, and conjugate gradient algorithms. Prerequisite: Students with credit for Math 853-4 may not take Math 923-4 for further credit.

Math 929-4 Selected Topics in Numerical Analysis Study of a specialized area of numerical analysis such as computational fluid dynamics, approximation theory, integral equations, integral transforms, computational complex analysis, special functions, numerical quadrature and multiple integrals, constrained optimization, finite element methods, sparse matrix techniques, or parallel algorithms in scientific computing.

Math 930-4 Fluid Dynamics
Basic equations and theorems of fluid mechanics. Incompressible flow. Compressible flow. Effects of viscosity. Prerequisite: Math 361-3 or equivalent. Math 462-3 is recommended.

Math 934-4 selected Topics in Fluid Dynamics Study of a specialized area of fluid dynamics such as hydrodynamic stability, multiphase flow, non-Newtonian fluids, computational fluid dynamics, boundary-layer theory, magnetic fluids and plasmas, bio-and geo- fluid mechanics, gas dynamics. Prerequisite: Math 930-4 or permission of the instructor.

Math 935-4 Mechanics of Solids Analysis of stress and strain. Conservation laws. Elastic and plastic material behaviour. Two- and three-dimensional elasticity. Variational principles. Wave propagation. Prerequisite: Math 361-3 or equivalent. Math 468-4 is recommended.-Students with-credit for Math 883-4-may-not take Math 935-4 for further credit.

Math 939-4 Selected Topics in Mechanics of Solids Study of a specialized area of the mechanics of solids such as composite materials, micromechanics, fracture, plate and shell theory, creep, computational solid mechanics, wave propagation, contact mechanics. Prerequisite: Math 935-4 or permission of the instructor.

Math 940-4 Mathematical Elasticity
Analysis of deformation and motion. Balance laws, stress and field equations. Cauchy and Green elastic materials. Boundary-value problems. Incremental elastic deformations. Elastic properties of solid materials. Prerequisite: Math 935-4 or permission of the instructor.

Math 945-4 Plasticity

An introduction to the mathematical theory of plasticity. Topics normally will include yield criteria and flow rules, torsion and bending, plane strain solutions and limit load analysis. Prerequisite: Students with credit for Math 890-4 may not take Math 945-4 for further credit.

Math 948-4 Continuum Mechanics

General introduction to modern theories of the mechanics of continuous media. Topics may include linear and non-linear elasticity, viscoelasticity, Newtonian and non-Newtonian fluids and multipolar materials. Prerequisite: Students with credit for Math 881-4 may not take Math 948-4 for further credit.

Math 950-4 Tensor Analysis on a Differentiable Manifold A first graduate course dealing with the following topics: Tensor Algebra, tensor fields on differentiable manifolds, differential forms, invariant problems in the calculus of variation, metric field theory and Einstein's equations.

Math 960-4 Mathematical Foundations of Quantum Mechanics I Historical introduction; Minkowskian space-time and Lorentzgroup; brief review of multilinear algebra; representation of Lorentz group in tensor spaces; representation of Lorentz group in spinor spaces; irreducible representations of Lorentz group; relativistic wave equations. Study of Lie group generated by elements of Lorentz group in neighborhood of identity. Prerequisite: Students with credit for Math 885-4 may not take Math 960-4 for further credit.

Math 961-4 Mathematical Foundations of Quantum Mechanics II Hilbert space; closed linear manifolds; operators in Hilbert space; eigenvalue problems; Hilbert space representation of Lorentz group, quantized fields. Statistical interpretation; uncertainty principle, measurement processes. Prerequisite: Students with credit for Math 886-4 may not take Math 961-4 for further credit.

Math 964-4 General Relativity I

Historical introduction; review of tensor calculus in pseudo-Riemannian space. The world function $w\left(X, X_{1}\right)$ and chronometry; pseudo-Riemannian space-time; the material continuum and Einstein's field equations. Differential and integral conservation laws and equations of motion; universes with spherical symmetry and application to planetary systems; statical universes; stationary universes. Prerequisite: Students with credit for Math 887-4 may not take Math 964-4 for further credit.

Math 965-4 General Relativity II

Further studies of pseudo-Riemannian geometry; tetrad formalism and Ricci rotation coefficients; Petrov's classification of special Einstein spaces X_{4}. Gravitional radiations; coupled electro-gravitional universes; combined Klein-Gordon-Maxwell-Einstein field equations; comments on geometrodynamics. Prerequisite: Students with credit for Math 888-4 may not take Math 965-4 for further credit.

Math 990-4 Selected Topics in Applied Mathematics
See also MATH 800-899 listed under Department of Mathematics and Statistics on page $x x$ and STAT 801-890 listed under Statistics Program on page x.

Rationale. The new calendar entry reflects above all the Department's wish to give adequate exposure to what it can offer students interested in applied mathematics and numerical analysis. At the same time the proposed entry reflects the intention to give more structure to the program followed by students who select the option of Applied and Computational Mathematics. In the M.Sc. more emphasis will be placed on course work and less on the thesis which will now be called a "project". Another element which has been incorporated in the M.Sc. is the insistence that all students gain some experience in the application of numerical methods.

The Department believes that the change in format of the M.Sc. will provide a better training for students and will make better use of faculty.

The appropriateness of a separate graduate calendar entry for Applied and Computational Mathematics is supported by the existence of a corresponding entry for Applied Mathematics in the undergraduate section of the calendar. The inclusion of "Computational" is intended to underline the importance attached to integrating the application of numerical analysis with the study of other areas in applied mathematics.

The Ph.D. program described in the new calendar entry is virtually the same as that which has existed for many years. The main difference is that the syllabus for the General Examination will be based on the six core courses listed in the M.Sc. requirements.

The revision of the M.Sc. regulations for students in Applied and Computational Mathematics does not constitute the introduction of a new program. Given the course changes proposed in III above the changes to the M.Sc. for this stream of students could be implemented under our present calendar entry through the cooperation of Supervisory Committees. However, this remark should not be interpreted as diminishing the need for a separate calendar entry which is essential for the healthy operation and growth of this part of the Department's program.

New Erndinte Course: Proposal Form

CAI.CiNAAR J:NFORUATIO: :

Department: \qquad Mathematics and Statistics Course Number: Math 833-4

Title: \qquad
veacrlpeloll: \qquad
Credit lours:_,

```
JUSTIFIGMTIO:N:
    This is a retitling of Math 833-4 whose present title is "Real Analysis: Selected
    Topics". The revised title will allow it to be used for a selected topics course
    in any part of Analysis.
```


RESTOUHCE:S:

```
Which faculty member will normally teach the cournc: Freedman, Thomson and others.
What are the budgetary implications of mounting the courne:
Nil
\%
```

Are there nuffletent Library resources (annend detaila): \qquad Yes

Appended:, n) Outline of the Giourec
b) An indication of che cometrace of tho Faculty member to alive the course. c) Library resources

silhon fuasid ninivesiti
 New Gradunte Course Promosnl 5 orm

CAIELIDAR ISHORYATIOR:

IENROLIMEST ANI- SCOIE.DM.INC:

Estimated limollment: $\quad 15-20$ Wien wili the course firritbe offered: 90-3 or 91-1
How often will the course be offered: Once every two years.

Justificirinis: Every student for an M.Sc. or Ph.D. in Applied and Computational
Mathematics will be required to obtain credit for this course. It should also appeal
to students in Mathematics, Science and Applied Science. Math $900-4$ is a replacement
for Math 843-4.

RESOUNCES:

Whach faculty member wlll normally teach the courac: Shen, Singh \& others.
What are the budgetary implicntions of mounting the courac: Nil

Are there nufficient Library resourcea (annend detnila): \qquad Yes

Appended:. n) Outline of the Gourge
b) An findication of the cometence of the faculty member to alve the courac.
c) Library resources

Approved:		nute: $24 / 08 / 90$
	Finculty Gradunte Studle Comaltere: \qquad W. Pereival	nite: $\underline{13 S e p t}$ '20 13
	Faculty:_ CAtW.Jore_	nate: 11 oct 0°
	- Senate Graduate Studien Commites:	$\text { Intr:20 } 29$
	Smate:	nulr:

JUsTIFIGiTIn: Every student for an M. Sc. or Phi. in Applied and Computational Mathematics will be required to obtain credit for this course. It should also appeal to students in Mathematics, Science and Applied Science. Math 901-4 is a replacement for Math 846

RF:SOUHCE:S:
Which faculty member will normally teach the course: Dis, Pechlaner and others.
What are the budgetary implications of mounting the course:_ Nil

Are there nufficient Library resources (amend details):
Yes
Appended:. n) outlIne of the finurge
b) An indication of the competence of the Faculty member to ale the course.
c) Library resources

 Faculty: \qquad

- Senate Graduate Studier Committee:
 nutr:27 Mon/40

Senate: \qquad mule: \qquad

CALENDAR JAHOREATIO:N:

JUSTIFICATION: This course will be available for elective credit to M. Sc. and Phi. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math $902-4$ is a replacement for Math 838-4.
RFSOUICl:S:
Which faculty member will normally teach the courac: Shoemaker, Trimmer and others.
What the budgetary implications of mounting the mourne:

Are there sufficient library resources (amend details): \qquad
Appended:. n) Outline of the Course
b) An Indication of the competence of the Faculty member to valve the course. c) Library resources
 Senate graduate seudsen comment ten: 8 Senate: \qquad nolo: \qquad

EIHON FRASI:K UNIVI:.SITY
 New Gradunte Course Promand Form

CAI.L:NIAn INFOROATIOR:

Department:
Mathematics and Statistics
Course Number: Math 905-4
Title:
Applied Functional Analysis
Vcocripllon: Infinite dimensional vector spaces, convergence, generalized Fourier series. Operator theory; the Fredholm alternative. Application to integral equations and sturmLiouville systems. Spectral theory.

Credie lloure:		4	vector: 4-0-0	Prerequinite(f) if ninv: Math 900-4 or\qquad

Catsoated linrollment: 12
How often wlll the course be offered: Irregular intervals.

This course will be available for elective credit to M.Sc. and Ph.D. students Justificitiniv: in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. "A Review of the Department of Mathematics
and Statistics" performed in March 1989 noted the absence of a graduate level course Functional. Analysis and stated that such a central area should be offered to graduat students. The proposed course will remedy this defect.

Are liore nufficient library resourcen (annend detnila):

```
Yes
```

Appended: n) Outline of the Gouree
b) An lindication of the cometence of tho Faculty member to alve the courne.
c) Litbriry resuurces

shan fraser unduresiti
 New Graduate Course Promosal Form

CAI.CNDAR JAFORUATIO:N:

Deportment: Mathematics and Statistics
Course Number: Math 910-4
Title: Ordinary Differential Equations
Description: The solutions and properties of ordinary differential equations and systems of ordinary differential equations in the real and complex domains.

Credit Hours:_ 4 Vector:_4-0-0_Prerequifite(s) if nnv:_Math_415-3 or equivalent. . Students with credit for Math 842-4 may not take Math 910-4 for further credit

ENBOLD,NFNT AND SCHEDHIBG:
Estimated lurollment:_12_When whit the course fleet be offered: When required. How often will the course be offered: Irregular intervals.

[^3]\qquad

RESOURCES:

Which faculty member will normally teach the course: Bojadziev, Dharma and others.
What are the budgetary implications of mounting the course: Nil
\qquad

Are there nufficicnt library resources (annend detalla):_Yes
Appended:. n) Outline of the four se
b) An indication of the competence of the Faculty member to Rive the course. c) Library resources

Senate Graduate Studlen Comindetec
 nate: 22 24

Senate: \qquad nile: \qquad

shon fhasile unim:
 New Srndunce Course Prowand Eorm

CAIB:MAR INFOREATIOA:

Department:_Mathematics and Statistics Conore Number: Math 912-4
Title: Partial Differential Equations
Description: An advanced course on partial differential equations. Topics covered usually
will include quasi-linear first order systems. and hyperbolic, parabolic and elliptic second-
 permission of the instructor. Students with credit for Math 845-4 may not take Math 912-4 for further credit.

Eotinated limrollment:_12 When wili the course flrst be offered: When required
How often will the course be offered: Irregular intervals.

JustiflCitinit: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics
Science and Applied Science. Math $912-4$ is a renumbering and retitiong of Math $845-4$. in Applied and Computational Mathematics. It should also appeal to students in Mathe
Science and Applied Science. Math $912-4$ is a renumbering and retitiing of Math $845-4$.
\qquad
\qquad

RE:SOUnCES:
Whisch faculty member wlll normally teach the courac: . Das, Sharma and others.
What are the budgetary implicntions of mountline the courne:_ Nil

Are there nuffichent hibrary reaourcen (anoend detnila): \qquad
Appended:. n) Dutline of the Course
b) An findication of the connctence of the Fnculty member to qive the courne.
c) Library resources

Approved:		nutr: 24108190
	Faculty Gradunte Studico Commltere: \qquad i). Perciral	nate: $13 \mathrm{Sep}^{\prime} \mathrm{l} 90$
	Foculty: CHW. Cons	Date: $110 d 90$ \qquad
	- Sennte Graduate SLudien Cominftee:	$\text { intr: 2) Mov } 14$

Spnatas \qquad nintr: \qquad

CAILLNDAR inforemtion:

Department: Mathematics and Statistics
Conare Number: Math 920-4
Title: Numerical Linear Algebra
Vcocrlpelon: Direct and iterative methods for the numerical solution of linear systems,
factorization techniques, linear least squares problems, eigenvalue problems. Techniques for parallel architectures.
Credfe llours: 4 \qquad Prerequifitic(s) if anv: Students with credit for Math 850-4 may not take Math 920-4 for further credit.

Cstimoted finrollment: 15-20_When ulli the course firet be offered: 91-3 or 92-1 How often will the course be offered: Once every two years.
Justificitina: Every student for an M.Sc. or Ph.D. in Applied and Computational Mathematics
will be required to obtain credit for this course. It should also appeal to students in
Mathematics, Science and Applied Science. Math $920-4$ is a renumbering of Math $850-4$.
Whisounces:

What are the budgetary implications of mountins the courac: Nil
\qquad

Are there nufficient Library reaourcen (annend detalia): \qquad
Appended:. n) Outline of the finurese
b) An indication of the comnetence of the Faculty member to glve the courae.
c) Library resources

Approved:	Dejnartmental (iraduate itudten Committe: Ci. W Lachbath \qquad	nute: $2+109 / 9$
	Faculty Graduate Studse Cormittre: \qquad	nate: 13 Sept 80
	Faculty: Crin. ${ }^{\text {Jones }}$	nate: 11 Oct 90
	. Senatc Graduate Studien Commitce:	$\text { Intr: } 27 \text { Now } 40$
	Srnate:	bula

shon flasier univiosifi
 New Eradunte Course Pronosal Form

CAI.ENDAR INFORUUTIO:I:

Title: Numerical Solution of Ordinary Differential Equations
Dcocrlption: Study of the practical numerical methods for solving initial and boundary value
problems for ordinary differential equations..
Credic llours:_ 4 Vector:_ $4-0-0 \quad$ Prerequinile(s) if nonv: Students with credit for Mäth 851-4 may not take Math 921-4 for further credit.

RESOURC1:S:
Whach Faculty member will normally teach the courbe: Russell, Trummer and others. What are the budgetary implications of mounting the courne:_Nil

CALENDAR INFORULTIDA:

Department: Mathematics and Statistics Course Number: Math 922-4

Title: Numerical Solution of Partial Differential Equations
Description: Analysis and application of numerical methods for solving partial differential equations. Finite difference methods, spectral methods, multigrid methods.
Credit lours:_ 4 Vector:_ $4-0-0 \quad$ Prerequifile(s) if nv: Students with credit for Math 852-4 may not take Math 922-4 for further credit.

I:NROLIMET AND_SCIIFDUIING:
Letfasted linrollment:_15-20_When will the course first be offered: 90-3 or 91-1
How often will the course be offered: Once every two years.

JUSTIFICiTIQ: Every student for an M. Sc. or Ph.D. in Applied and Computational Mathematics will be required to obtain credit for this course. It should also appeal to students in Mathematics, Science and Applied Science. Math 922-4 is a renumbering of Math 852-4.
Whisounclis:
Are there nufficient library resources (anoend details): Yes Yes

Appended:. n) Outline of the C nurse
b) An indfatlon of the competence of the Faculty member to alive the course.
c) Library resources

Senate Graduate Studier Comintece
 Dante: \qquad Senate: \qquad Date: \qquad

New Graduate Course Prounal Form

CAILSNAR INFOROUTIOR:

Department: \qquad Mathematics and Statistics Conure Number: Math 923-4

Title: Numerical Methods in Continuous Optimization
Vebcriptloll Numerical solution of systems of nonlinear equations, and unconstrained
optimization problems. Newton's method, Quasi-Newton methods, secant methods, and conjugate gradient algorithms.
Credit lours: 4 \qquad Vector: \qquad Prerequialle(s) if nov: Students with
credit for Math 853-4 may not take Math 923-4 for further credit.

Letinated limollment:_12 When will the course first be offered \qquad
How often will the course be offered:___ Once every two years.

JUSTIFIGiTIO: This course will be available for elective credit to M. Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics,

Science and Applied Science. Math 923-4 is a renumbering of Math 853-4.
\square

RESOURCES:

Which Faculty member will normally teach the course:_. Russell, Trimmer and others.
What are the budgetary implications of mounting the courne:_ Nil
\qquad

Are flier nulflelent Library resources (annend details):
Appended:. n) OutlIne of the four ge
b) An indication of the competence of the Faculty member to Rive the course.
c) Library resources

Faculty Graduate Studies Comaltere: \qquad nate: \qquad
Faculty: \qquad nate: $110 \operatorname{tg} 0$

Sente Graduate studien cominitten:
Senate: \qquad note: \qquad

New Ergdunte Course Pronozal Form

CAILB:DAR JHFDROATIO:A:

Deporment: Mathematics and Statistics
C.oure Numlier: Math 929-4

Title:
Selected Topics in Numerical Analysis
Study of a specialized area of numerical analysis such as computational fluid vescrlplion: dynamics, approximation theory, integral equations, integral fransforms, computational complex analysis, special functions, numerical quadrature and multiple integrals, constrained optimization, finite element methods, sparse matrix techniques, or parallel algorithms in scientific computing.
 \qquad

Cstinsted inrollment: \qquad When wili the course firet be offered: \qquad When required

How often will the course be offered: \qquad Irregular intervals.

Justiflgitin: : This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal te students in Mathematics

Science and Applied Science. Math $929-4$ is a renumbering of Math $855-4$.

Whilh Faculty member wlll normally teach the courac: Russell, Trummer and others.
What are the budgetary implicatsons of mounting che courac:_Nil
Are liore nufficient Library resourcea (annend detílla): Yes

Appended:. n) Outilne of the enurie
b) An findication of the cometence of the Faculty member to Rive the course.
c) Library resources

Senate: \qquad nulr: \qquad

New Gradunte Course Promand Form

CAI.L:NDAR J:AFOROUTION:

Department: \qquad Mathematics and Statistics
Couree Number: Math 930-4
Title: Fluid Dynamics
Descriplion: Basic equations and theorems of fluid mechanics. Incompressible flow.
Compressible flow. Effects of viscosity.

Cetinated finrollment: 15-20_When whit the course first be offered: 90-3

How often wlll the courge be offered: Once every two years.

JustIficijinis: Every student for an M.Sc. or Ph.D. in Applied and Computational Mathematics will be required to obtain credit for this course. It should also appeal to students in Mathematics, Sciences and Applied Science. Math 930-4 is a replacement for Math 882-4

RESOURCES:

Whil faculty member wlll normally teach the courne: Singh, Tao and others.
What are the budgetary implicnclone of mounting the cournc: Nil
\qquad

Are there nufficlent library resourcen (annend detalla): \qquad Yes

Appended: n) Outline of the finurse
b) An Indication of the comnetence of the Fnculty member to plve the course.
c) Library resuurces

Senale: \qquad nutr: \qquad

CALENDAR INHORUATIOA:

Department: Mathematics and Statistics Conure Number:_ Math 934-4
Title: Selected Topics in Fluid Dynamics
Description: Study of a specialized area of fluid dynamics such as hydrodynamic stability, multiphase flow, non-Newtonian fluids, computational fluid dynamics, boundary-layer theory, magnetic fluids and plasmas, bio-and geo-fluid mechanics, gas dynamics.

Letinated Enrollment:_12_When wifi the course first be offered: When required

How often will the course be offered: \qquad
\qquad

JUSTIFICAtION: This course will be available for elective credit to M. Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math 934-4 is a replacement for Math 891-4.


```
RESOURCES:
Which Faculty member will normally teach the course: Singh, Tao and others.
What are the budgetary implications of mounting the courac: Nil
```

Are there sufficient library resources (nnoend detalfa): \qquad Yes

Appended:. n) Outline of the (nurse
b) An Indication of the comet once of the Faculty member to of vo the course.
c) Library resources

Faculty: \qquad note: 11 od r 90 Senate Graduate studio Cominltece: \qquad note: 27 /6or/60

Smote: \qquad Intr: \qquad

salmon phasic unduiesity
 New Erndunce Course Proposal Form

Cai.lindar information:

Department: Mathematics and Statistics__Coure_ Number:_ Math 935-4
Title: Mechanics of Solids.
Vencrlption: Analysis of stress and strain. Conservation laws. Elastic and plastic material behaviour. Two- and three-dimensional elasticity. Variational principles. Wave propagation. Credit flours:_ 4 vector:_4-0-0_Prerequifice(s) if nav: Math 361-3 or equivalent. Math 468-4 is recommended. Students with credit for Math 883-4 may not take Math 935-4 for further credit.

Cetfnated birrollment: 15-20 When will the course first be offered: 91-3
How often will the course be offered:_ Once every two years.

Justificitinis: Every student for an M. Sc. or Ph.D. in Applied and Computational Mathematics will be required to obtain credit for this course. It should also appeal to students in Mathematics, Science and Applied Science. Math $935-4$ is a replacement for Math $883-4$.

RESOURCES:

Which Faculty member will normally teach the courac:_ Sharma, Singh and others.
What are the budgetary implications of mounting the course: Nil

Are there nufficlent library resources (anoend detnila): \qquad
Appended:. n) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources
 Faculty Graduate studies Cormaltire: P. ω Perceval nate: 13 Sept ion Faculty: \qquad nate: HO of 90 Senate Graduate studier committee:

Senate: \qquad n! te: \qquad

Cal.c:ngar information:

Department: Mathematics and Statistics_Coure Number:_ Math 939-4

Title: Selected Topics in Mechanics and Solids.
Description: Study of a specialized area of the mechanics of solids such as composite materials, micromechanics, fracture, plate and shall theory, creep, computational solid mechanics, wave propagation, contact mechanics.
 permission of the instructor.

I:NROLLDIEST AND SCIIT:DIII.INS:
Estlnaled linrollment:_12_Wien wii the course first be offered: When required
How often will the course be offered: Irregular intervals.

JuSTIFICAtION: This course will be available for elective credit to M. Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math 939-4 is a replacement for Math 892-4.
\qquad
RE: SOURCES:
Which Faculty member will normally teach the courage:
Shoemaker, Lardner and others.
What are (lie budgetary implications of mounting the course: Nil
\qquad
\qquad
Are there nufficlent library resources (anoend details): \qquad
Appended:. n) outline of the course
b) An findicatioli of the competence of the Faculty member to give the course.
c) Library resources

 Faculty: \qquad nate: \qquad

Senate Graduate Studier Comindtee:
 bute: 27 2106

Senate: \qquad nine: \qquad

CAILBDAAR INFOR'UTIO:I:

Department: \qquad Mathematics and Statistics Course Number: Math 940-4

Title:

Mathematical Elasticity

Description: Analysis of deformation and motion. Balance laws, stress and field equations. Cauchy and Green elastic materials. Boundary-value problems. Incremental elastic deformations. Elastic properties of solid materials.

I:NROLDSMEST ANU SCIIFDUIINS:

How often will the course be offered:_ Irregular intervals.

Justifigitinis: This course is available for elective credit to M. Sc. and Phi. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics,

Science and Applied Science. Math $940-4$ is a replacement for Math 884-4.
Whisounces:

What are Lis budgetary implications of mounting the courne: \qquad
Are there hufflcient library reaourcea (annend detnila): Yes

Appended: n) Outline of the Course
b) An Indiction of the competence of the faculty member to glue the course.
c) Library resources
 Faculty Graduate studice Committee:_ P. . Premed nate: $\frac{13 S_{c}+190}{10}$ Faculty:__ CHT. Jones note: Il Odra

Senate Graduate studien Comintiten:
 nine: 22 The r/4o
Senate: \qquad nolo: \qquad

SIHON FHASI:K UNIVI:QSITG
 How Eradunte Course Prownal Form

CABLSDDAR INFORUMTIO:N:

Department: \qquad Mathematics and statistics
Conrae Numher: Math945-4

Title:

\qquad
Descriplion: An introduction to the mathematical theory of plasticity. Topics normally will include yield criteria and flow rules, torsion and bending, plane strain solutions and limit load analysis.

credit for Math 890-4 may not take Math 945-4 for further credit.
$\rightarrow-\infty$

I:NHOL.LMI:NT ANIS SCHF.DII.I.NG:
Latimoled limollment: $12 \ldots$ When wlif the course firse be offered: When required.
How often wlil the course be offered:___ Irregular intervals.

Justiflcinin: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math 945-4 is a renumbering and retitling of Math 890-4.

RE:SOUNCE:S:

Which Faculty member wll normally teach the cournc: Shoemaker, Singh and others.
What are the budgetary implications of mounting the courae: Nil
\qquad
\qquad
Are there nufficlent Library resourcea (annend detnila): Yes

Appended:. n) Outline of the Courec
b) An indlcation of the cometrince of the Fnculty member to que the course. c) Libriry resources

Srnate: \qquad InIfr: \qquad

CAI.L:NDAR J:NFORUMTIO:S:

Departmene: Mathematics and Statistics
Courac Number: Math 948-4
Title:_Continuum Mechanics
Vcscriptlon: General introduction to modern theories of the mechanics of continuous media. Topics may include linear and non-linear elasticity, viscoelasticity, Newtonian and nonNewtonian fluids and multipolar materials.

Credll llours: 4 Vector:_4-0-0_rerefulalte(s) If nnv: Students with credit for Math 881-4 may not take Math 948-4 for further credit.

I:NIOLIMM:NT AND SCHE.DII.J.NC:

Estlnated limrollment:_ When whin the course firsi be offered: When required
How often wlll the course be offered:__ Irregular intervals

JUSTIFICATIN: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math $948-4$ is a renumbering and retitling of Math $881-4$.

Are there nufficlent Library renourcea (annend detnila): Yes
Appended:. n) Outline of the finurfe
b) An lindication of the cometence of the Faculty mimber to give the courge.
c) library resources

Approved:	Départmental Groduate itudien Committee: Gth Kachlan \qquad	nute: $24 / 08190$ \qquad
	Faculey Gradunte Studies Comaltire: \qquad	$\text { nate: } 13 \text { Sepet } 90$
		nate: 11 Odrao
	- Sennte Graduate Studien Commltter:	$\text { Iner: } 22 \text { Now } 40$
	Senates	1 r :

Department:_Mathematics and Statistics_Courec Number: Math 950-4
Title: Tensor Analysis on a Differentiable Manifold.
Vcscripllon: A first graduate course dealing with the following topics: Tensor Algebra, tens fields on differentiable manifolds, differential forms, invariant problems in the calculus of variation, metric field theory and Einstein's equations.


```
MNROLLMH:NT AND SCMEMMIMN:
Estimoled Emrollment: }1
```

\qquad

``` When wii the course first be offered: When required How often will the course be offered: Irregular intervals

> Justiflciolon: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math \(950-4\) is a replacement for Math \(893-4\).
```


Which Faculty member will normally teach the courac: Dis, Pechlaner and others.
What are the budgetary impllantions of mounting the course:_ Nil
.

Are there nufficient Library resources (anted details):

Yes

Appended:. n) Outline of the Course
b) An indication of the competence of the Faculty member to give the course.
c) Library resources

\qquad Mathematics and Statistics Courne Numlier: Math 960-4

Title: Mathematical Foundations of Quantum Mechanics I
Historical introduction; Minkowskian space-time and Lorentz-group; brief review Descripilon: of multilinear algebra; representation of Lorentz group in tensor spaces; representation of Lorentz group in spinor spaces; irreducible representations of Lorentz qroup; relativistic wave equations. Study of Lie group generated by elements of Lorentz group in neighborhood of identity ${ }_{\text {Credt llours: }}$ 4. \quad vector: $\quad 4-0-0$ Prercoulalte(s) if now: Students with credit for Math 885-4 may not take Math 960-4 for further credit.

1:NROLLMMT ANU SCUEDUIING:
Estimated linrollment:_12_When whin the course firit be offered: When required

How often will the course be offered:__ Irregulax intervals.

JuSTIFICiTION: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math $960-4$ is a renumbering of Math 885-4.

\qquad

Are there aufficlent Library resourcen (annend detalia): \qquad
Appended:. n) Outline of the finurse
b) An indleation of the comnetence of the fnculty member to plve the courge. c) Library resources

Scnata: \qquad nolr: \qquad

CAIL:HDAR INFORUATION:

Ebtinated-Entodment:
12
When-whi-the course risithe orfered: \qquad
How often will the course be offered: Irregular intervals.

JUSTIFICiTIOM: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math 961-4 is a renumbering of Math 886-4.

Are there nuf(felent Library renourcen (nnoend detnlla): Yes
Appended:. n) Outline of the fourge
b) An indication of the comnetence of the Faculty member to plve the course.
c) Library resuurces

Approved:	Departmentol Graduate itudien Committoe: Cit1 tachtin	nntr: $2 \mathrm{2}: 08100$
	Faculty Graduate Studee Corjnittrc: \qquad Pis Percial	N:1c: $13 S_{e p t}+90$
	Foculty:_C_CH.Jonts	nate: $110 \operatorname{cog}$
	- Sennle Graduate Studfen Comultice:	Intr: 2) Now/4o
	Senate:	IIMIr:

shon finsicit undm:nsidy

Now Eradunce Course Prownal Form

CAICLNDAR INFDREATIOS:

Department \qquad Mathematics and Statistics
Courac Number: Math 964-4
Title: Genëral Relativity I
Historical introduction; review of tensor calculus in pseudo-Riemannian space.
vescripilon: The world function $w\left(X, X_{1}\right)$ and chronometry; pseudo-Riemannian space-time;
the material continuum and Einstein's field equations. Differential and integral conservation laws and equations of motion; universes with spherical symmetry and application to planetary systems; statical universes; stationary universes.

Credit llours: $\quad 4 \quad$ Vector:_4-0-0_ Prerefulfile(s) if nov: Students with credit for Math 887-4 may not take Math $\overline{964-4}$ for further credit.

CetInaled limollment:
12 When whli the course flort be offered: When required

How often will the courge be offered: Irregular intervals.

Justiflcitinis: This course will be available for elective credit to M.Sc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math $964-4$ is a renumbering of Math 887-4.
WESOUACES:
What are the budpetary implications of mountins the courne:_ Nil___
\qquad

Are elisere nuf(ledent Library resourcen (nnoend detalle): \qquad Yes

Appended:. n) Outline of the Gourse
b) An indication of the cometence of tho finculty member to give the courne. c) Library resuurces

Senata: \qquad Dula: \qquad

Hew Graduate Course: Proposal Enron

Department: \qquad Conure Number: Math 965-4

Title: General Relativity II
Further studies of pseudo-Riemannian geometry; tetrad formalism and Riccio
Vescripllon: rotation coefficients; Petrov's classification of special Einstein spaces X_{4} Gravitational radiations; coupled electro-gravitational universes; combined Klein-Gordon-Maxwell-Einstein field equations; comments on geometrodynamics.

Credit llours:_4._Vector: 4-0-0
frerequifite(r) if nov: Students with credit for Math 888-4 may not take Math 965-4 for further credit.

How often will the course be offered:___ Irregular intervals

Justiflcirin: This course will be available for elective credit to MASc. and Ph.D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math $965-4$ is a renumbering of Math $888-4$.

RESOURCES:

Which faculty member will normally teach the cournc: Dis, Pechlaner and others.
What are the budgetary impifentions of mount hire the courne: Nil

Are there nufflelent Library resource (annend detain): Yes
Appended:. n) Outline of the Course
b) An Indication of the competence of tho faculty member to Rive the course.
c) Library resources

faculty: \qquad note:

Senates \qquad late: \qquad

CAILL:HAR INFORYATIOR:

Department: Mathematics and Statistics Conurac Number: Math 990-4

Tılle: Selected Topics in Applied Mathematics
Ucacrlpelon: \qquad

[^4] in Applied and Computational Mathematics. It should also appeal to students in Mathematics, Science and Applied Science. Math 990-4 is a renumbering and retitling of Math 889-4.

Appendix B. Graduate calendar entry for the Department of Mathematics and Statistics.

If the changes proposed in I-IV are approved, a revision of the calendar entry for the Department of Mathematics and Statistics will be required. The revised calendar entry is set out below:

Department of Mathematics and statistics
Location: 10512 Shrum Science Centre
Telephone: 291-3331
Chair: A.R. Freedman, A.B. (Calif.), Ph.D.-(Oregon State)

FACULTY AND AREAS OF RESEARCH
B.R. Alspach Graph Theory, discrete mathematics
J.L. Berggren

History of Mathematics, algebra
G.N. Bojadziev
T.C. Brown

Applied Mathematics
A. Dis
C. Dean
D.M. Eaves
A.R. Freedman
H. Gerber
G.A.C. Graham
L. Goddyn
R. Harrow
K. Heinrich
P. Hell
C.W. Kim
A.H. Lachlan
R.W. Lardner
R. Lockhart
A. Mekler
E. Pechlaner
N.R. Reilly
R.D. Routledge
R.D. Russell
D. Ryeburn
J.J. Somber
D.L. Sharma
C.Y. Shen

Algebra, combinatorics
Applied Mathematics
Statistics
Statistics
Number theory, analysis, automat theory
Mathematical Logic
Applied Mathematics
mechanics
Combinatorics
Medical computing, mathematical logic
Combinatorics
Computational discrete mathematics
Analysis, probability
Mathematical Logic
Applied Mathematics
Statistics
Mathematical Logic
Applied Mathematics
Algebra
Statistics, population biology
Applied Mathematics
General Topology
Functional Analysis
Applied Mathematics
E.M. Shoemaker
M. Singh

Applied Mathematics
Applied Mathematics
Applied Mathematics
M.A. Stephens
T.B. Swartz

Statistics
Statistics
T. Tang
B.8. Thomson

Applied Mathematics Mathematical Logic
Analysis
M. Trummer
C. Villegas
K.L. Weldon

Applied Mathematics
Statistics
Statistics

Admission

For admission requirements, refer to the Graduate General Regulations.

Applicants are normally required to submit scores in the aptitude section and an appropriate advanced section of the Graduate Record Examinations of the Educational Testing Service. Applicants whose first language is not English will normally be asked to submit TOEFL results.

Students interested in Applied and Computational Mathematics or Statistics should consult the entries under Institute for Applied and Computational Mathematics and Institute for Statistics.

Degree Requirements for M. Sc. and Ph.D.

M. sc. Program

A candidate for the M.Sc. degree will normally be required to obtain a total of at least 20 semester hours of credit for course work beyond courses taken for the Bachelor's degree. of these 20 hours, at least 12 are to be in graduate courses or graduate seminars, and the remaining 8 may be chosen from graduate courses or graduate seminars or 400 division undergraduate courses. The student will also be required to submit a satisfactory thesis and to attend an oral examination based on that thesis and related topics.

Ph.D. Program

A candidate for the Ph.D. degree will generally be required to obtain at least 28 hours of credit for course work beyond courses taken for the Bachelor's degree. Of these 28 hours, at least 16 are to be in graduate courses or graduate seminars and the remaining 12 may be chosen from graduate courses or graduate seminars or 400 level undergraduate courses. Students who hold an M. Sc. in Mathematics or Statistics are deemed to have earned 12 of the 16 graduate hours and 8 of the 12 undergraduate or graduate hours required. The course work in all cases will involve study in at least 4 different areas of Mathematics and/or Statistics.

Candidates for the Ph.D. degree will normally be required to pass a General Examination. The General Examination will consist of examinations in three areas.

The areas selected for a particular candidate are subject to approval by the Supervisory Committee and the Graduate Studies committee. In a given area the examinations may be written or oral at the option of the Graduate Studies Committee. A candidate ordinarily will not be allowed to take the General Examination more than twice. Students will be interviewed and advised regarding appropriate courses and examination curricula.

Students who have completed a Master's degree will normally be required to attempt the general examination within one year of their initial registration in the Ph.D. program.

A candidate for the Ph.D. may be required by his/her - ---Supervisory-Committee-to-acquire-proficiency-in-readingmathematical papers in either French, German or Russian.

Students will be required to submit and successfully defend a thesis which will embody a significant contribution to mathematical knowledge.

For further information and regulations refer to the Graduate General Regulations section.

Graduat.e Courses

 degues; in lhe Facully of Science.
MAlll GOJ-A Foundollone of Anthamallen

 mont of hallinematics and Statistics camet tahe this coultse in salisfy lien ciryumichaimemolis.
A:Alli r-04.4 reomelry
Eucliofoan and non.Euclitean Gromolines. Kipinis Eilanunn weutam. Ire.

 onatios and Stalistics canmot tahe this contse to satishy their depren requige. nemis.
MATI 605-4 Malliemalical Modelling
Inte oduction lo idalhemalical modeling using alunbraic. qeowelic, Iperininues atong with techniques using calculus Finequisifn acc.rylance into tho At.Gc. pregram in Malliematics Educalion and onn jear of universify level calculles. Gradiate students in the Onpartment of hiathomatiess ami Stalistics camot take this courso to salisfy lineir degree requirments.

MAIII B00-A FuIe Malliamatica:Selectedtopica
MATII BOG-4 Mathamalicalloglc ll
Finst-udder llieorias. Some synlaclical theorems concarniny frovability, such as the equivalence and nutality theorems: the rompleleness theorein and some of its consequencas lor pquivalence of synlaclical and semanlical notions, and intioduction to modelticory, incomplateness of lomnal anthmelic.
MAIII 001-4 Mallematical Loulc:Selecied Toplce
laAll \quad HLHA Malliomallcallugle lif
Intecthation lorecursien llienry. Churchis Thissis, Godel. Atusser meompleteness Heporem. undecidability. Klearis nomal kotn lieotem and enumonations theorem. He recursion llinotem. The neillmintic himiatchy. The analytical himarcliy Degrees of umentvability. Dasic lleorems. Additional topics, if lime permils. Fierequisita. AIATHBOG.
Math 0iza nlgabral
theory of lields. Topics covered will include separable, nomnal. Galois, and lianscendental extensions: linite lields and algebraically closed lieids. Ad. dinemal topics may include inlinite Galuis groulls. valıation. Kummer entenions and Gabis cohomolouy. Iur ther material in alyelraic number lineory.

Matll Blja Alpabtall

Group liscory. Generalors and ielations. nomalizers and centializets. commosilion series. Femulation proups. Sylow Hicory, abelian proups. Oller lunics covered will be the lieory of p yrours, nilyotent and solvable groups, and some nspects of simple groups.

MAIII B14-4 Algebrn:Seleciad Topice

MANTH BISA Aluebrall
Minos and modules. Commulative and noncommutalive associate rinos will, ascending or detcandino chain eondition, Jacoleson radiral Clievaliey.Jacobson density lieorem. Wedrlerburn. Allin lireorems, Goldiẹ licorems, will applications lomaltix groups and ỵoun alyebras. As lime permils, homologicat and tocal ineliods.
MATH BIGA AlymbIAIV
Honmology. Caleyuics. hunctors, adjoinl hunctors. homoleray, and cohomolouy if eomplea. Universal coelicient theorem: Exin colmolocy ol urouns: Scturs theorem. Tensor and torsion producls. Global dimension ol tinces.
MATH 620-A Ginplitheory
A lusl yraduale course in prayth theory Jealing wilh some o! the followine alpebraic quaph lhoory. oxlinmal praph thenry colating problems. puplications of graphs. hyperge aplis. and curieni iespaiciniotics.
MATH 821- Comblnatorica
An hileoduction to ling theory of bloch dosiuns, finilo unomolios ind intated topics.

RIATH B2S-A Enumerallon

Enumeration problems concornad will pnenmiations, snqumncos, partitons. laltice walks and praphs. slgybraic and analytic proportins of yenorating functions, asymptolic analysis.
MATH 826-4 Foeels and Malrolda
An introduction to the theory of posols, goonmotric tallicos and matroids.
AIAJH 02J-4 Ulscrete Mathemntics: Selected Topics
AIATH BJIA Meal Analysial
An intonsive sludy of Lobosquo moasurn, intoyralion and ling Lolmasung convargance theorgms lognthor wilh the lioalmant of such topics as alsohuln. contimenity. Tha fundamentallinom nom of calrulus. tho Lp-sparens. comparison ol l,pes of convarganco in lunclior spaces, tho Dairo calogory lhoor oll.

SATII 832-4 Anal Analy in It
his courso normally counts abstract moasono ams inlagralime, and mangrial hich collactivaly mighll bo callod an introduction to tunctional analy:is (a.g. ompleto molic spacos, nomal spacos. Ihn Stunn.W/gintstias. Hon gm. noar lunctionals and tho Hatur. (3anach theorgoll). Ollin spociali; nellopics in: rodern analysis. Prerequisife: AIATHOJI.

IATH 033-4 \therefore-i: Analysin: Selected Toples
 IATH OJG-A Complex Analyalel

onics covered normally will includn: Fliamann sutiacas. compine comiugate o.ordinates: the maxinum poincipto, bounijary valun problemes: conformal appings. Scliwati.Cheistollol lumula; llo symmotry princiolo, analytic ontinuation.
IATH 637.4 Complex Analyate is
onica countod will includn sonne of lin Jollowinu: anting furchiras. nornal
 irclinns: Picards theorem, Preroquisirg: MATH0JG.

ATH Q39-4 Topologil
lirst graduala course in ganaral topolout, Jnailug will some of tha following
 aness notions. snoaration properlins. countaoility oropnetins. cmmpacinoss oporlios. paracumpacinoss. mo
ATh BA0.4 Topologyll

IATH B4IA Topology: Selecled Top:ics
ATH 071.4 Applied Probabllly Models

 37 or equivalert.

 ivendentrandor
ATH E73-4 Probabilityll probabilitymgasurgs onfunction sparses: lochastic procnssns. Cnnslrur.ion of probas: consluction and convirgenc.a ol obability moasures on mintic soaros. on spacos of conlinuous lunclrons. on illint spacg. on spaces ol genoralizgd iunctions.

IATH	874-4	Probsbility: Salected Toplics
IATH	094-2	neading
IATH	095-A	Meading
ATII	896-2	Inloductory Semina
AATH	097.2	Advancad Sent
IATH	190	N.Sc. Thasin
AATH	099	ili.D. Thesis

See also MATH 900 to MATH 990 listed under Applied and Computational Mathematics Program, page xxx, and STAT 800 to STAT 890 Listed under statistics Program, page yyy. These courses may also be used to satisfy the course requirements for the M.Sc. and Ph. D.

[^0]: *The formation of an Institute for Statistics and Probability has been proposed. Should the Institute be created appropriate changes would be made to the calendar entry which would then appear under the Institute.

[^1]: The new course proposal forms will be found in Appendix A.

[^2]: *The formation of an Institute for Applied and Computational Mathematics has been proposed. Should the institute be created appropriate changes would be made to the calendar entry which would then appear under the Institute.

[^3]: Justiflcitloi: This course will be available for elective credit to M. Sc. and Ph. D. students in Applied and Computational Mathematics. It should also appeal to students in Mathematics Science and Applied Science. Math $910-4$ is a renumbering and retitling of Math 842-4.

[^4]: JUSTIFIGinin: This course will be available for elective credit to M.Sc. and Ph.D. students

