SIMON FRASER UNIVERSITY

MEMORANDUM

To:	Senate	From:	J.M. Munro, Chair Senate Committee on Academic Planning
Subject:	Faculty of Applied Sciences - Graduate Curriculum Revisions	Date:	November 18, 1993

Action undertaken by the Senate Graduate Studies Committee and the Senate Committee on Academic Planning gives rise to the following motion:

Motion:

"that Senate approve and recommend approval to the Board of Governors the curriculum revisions for the Faculty of Applied Sciences as set forth in S.93-59 as follows
S.93-59a School of Computing Science
S.93-59b School of Engineering Science
S.93-59c School of Kinesiology"

School of Computing Science
Summary of Graduate Curriculum Revisions

SGSC Reference: SCAP Reference:

Mtg. of October 25, 1993
SCAP 93-37a

Changes to the Graduate Program Regulations

Proposed Revisions to the Computing Science Graduate Program Regulations

This document presents a proposal for major revision of the Computing Science Graduate Program Regulations. It is the product of a series of joint meetings and consultations involving faculty and graduate students in the School of Computing Science between May 1993 and August 1993. The regulations proposed here are endorsed by both the faculty and the graduate students.

Over the last few years, dissatisfaction with the operation of the current regulations has been building within the School. The dissatisfaction centered on the Ph.D. Breadth Requirement: Its intricate interweaving of breadth structure, course offerings, and comprehensive examinations was causing distortions in the graduate program and was not able to provide sufficient flexibility to respond to the growth in the body of knowledge comprising computing science or to the School's desire to accommodate interdisciplinary work. This led the School to embark on a comprehensive review of the Graduate Program Regulations, with the result presented here.

Two changes are central to the proposed regulations:
*The initial evaluation point for Ph.D. students has been shifted from an evaluation following completion of comprehensive examinations to an evaluation following completion of a depth examination. In spirit, this represents a change in the scope and focus of the evaluation, from an emphasis on breadth to an emphasis on depth and research. This reflects the belief of the faculty and graduate students that original research is at the heart of a Ph.D. degree, so that depth and research skill should be emphasised at important evaluation points in the program.

* A new, more flexible structure is used to define breadth requirements, affecting both the M.Sc. and Ph.D. breadth requirements. It is a hybrid structure based on the Association for Computing Machinery (ACM) curriculum recommendations and the strengths of the School's faculty. It provides a mechanism for growth within computing science and in interdisciplinary work.

1. Discussion of Current and Proposed Regulations

1.1. Admission

The current regulations were designed to make it effecitvely impossible to enter the Ph.D. program without completion of a Master's degree. The proposed regulations relax this, in line with the desire of the faculty to be more flexible in this regard. The School is seeing an increasing number of qualified applicants and wants the regulations to show that admission to the Ph.D. program before completion of a Master's is an option.

1.2. Breadth Structure

The current regulations use a breadth structure which is tied to the Ph.D. Breadth Requirement and comprehensive examinations. It divides knowledge in computing science into 6 broad areas: Artificial Intelligence, Computer Design and Organization, Computer Systems, Database Systems, Programming Languages and Systems, and Theoretical Computing Science. Associated with each area is a survey course (the " 700 -level" course for the area).

A course breadth requirement for M.Sc. students is defined implicitly by requiring two 700 -level courses (hence two areas). At the Ph.D. level, the course breadth requirement is subsumed by the Ph.D. Breadth Requirement.

These area divisions are adequate for the purpose of defining a breadth distribution within computing science. However, as the body of knowledge in computing science has grown, they have become too broad for the other purposes
they are made to serve: defining the scope of a comprehensive examination and the associated 700 -level course. Nor do they provide for subject areas outside of computing science which are essential for good interdisciplinary work.

The proposed regulations define a new structure which identifies three major areas: Formal Topics in Computing Science, Computer Systems, and Knowledge and Information Systems. Within these three areas, subareas are defined. The structure is a hybrid based on ACM curriculum recommendations [1,2] and the strengths of the School's faculty. Table 1 in the proposed regulations shows an initial set of subareas within computing science. It is expected that new subareas will be identified and defined as the body of knowledge in computing science continues to grow. It is also expected that interdisciplinary work will require the definition of subareas outside of computing science. The proposed regulations provide for the approval of new subareas, when justified, by a Graduate Breadth Evaluation committee.

At both the M.Sc. and Ph.D. levels, the proposed regulations define course breadth requirements by specifying that courses must span a minimum number of subareas, with a specific distribution among the three major areas.

1.3. Supervisory Committees

There is no corresponding section in the current regulations. This material is added to the proposed regulations to make it clear that selection of a senior supervisor should be by mutual consent based on commonality of research interests.

1.4. Research Topics Seminars

This seminar series has been used for several years to acquaint new graduate students with the research interests of the faculty.

In the proposed regulations, it is expanded to include the thesis seminars that students are expected to give at thes completion. The hope is that this will increase research interaction among the graduate students, give new graduate students an idea of what constitutes a thesis, and relieve some minor scheduling problems associated with thesis seminars.

1.5. M.Sc. Program

The current regulations specify a course requirement of 6 courses, with a breadth requirement of two 700 -level courses. Research work culminating in the writing and defense of a thesis completes the degree.

The proposed regulations do not change the basic structure of the M.Sc. program. The number of courses is reduced from 6 to 5 , while the breadth required is increased slightly to a range roughly equivalent to three of the existing 700 -level courses. These changes remain well within the normal range of requirements for computing science Master's programs.

1.6. Ph.D. Program

The current regulations specify a Breadth Requirement composed of courses and comprehensive exams, and a course requirement which is usually satisfied using the same courses as are applied toward the Breadth Requirement. Research work culminating in the writing and defense of a thesis completes the degree.

The initial evaluation of a student in the Ph.D. program is for satisfaction of the Breadth Requirement. Comprehensive examinations are held in late April, following the end of the Spring semester; the evaluation follows immediately afterward. The faculty have become increasingly dissatisfied with the Breadth Requirement for mad reasons:

* If any single quality can be identified as most important to successful completion of a Ph.D. degree, it is the. ability to do original research. Performance over two semesters of courses and exams designed to measure breadth can be used to predict research ability, but better evaluation methods are possible.
* The notion of breadth at the Ph.D. level requires changes to accommodate growth in computing science and in interdisciplinary work, but changes could not be made without also changing the structure of the Ph.D. Breadth Requirement.
* The absolute requirement to offer the 700 -level courses once a year was consuming the School's graduate teaching capacity, straining our ability to offer the advanced courses necessary for a top quality graduate program.
* The structure of the Ph.D. Breadth and course requirements (which allow students to use up to three 700 -level courses in lieu of comprehensive exams and double count them toward the Ph.D. course requirement), together with the critical importance of satisfying the Breadth Requirement, led Ph.D. students to concentrate entirely on survey courses and review. during their first two semesters in the program.
* The importance of CGPA in university scholarship_competition encouraged students to devote maximumeffort to obtaining high marks in the three 700 -level courses applied to satisfying the PhD. Breadth and course requirements, and then discouraged them from risking that CGPA by taking advanced courses for credit.
In sum, the Ph.D. Breadth Requirement and its side-effects have introduced distortions into the graduate program which the faculty feel are undesirable.

The proposed regulations change the structure of the Ph.D. program to address these concerns. First, the initial evaluation is shifted to follow a depth exam which will normally occur before the end of the student's second year in the program. This allows time for the student to develop depth in her/his chosen research area and gives the faculty time and a base of experience with which to accurately evaluate the student's research potential as well as depth and breadth ff knowledge. The Breadth Requirement of the current regulations is eliminated.

The Ph.D. course and breadth requirements in the proposed regulations are defined within the new structure outlined in §1.2. This provides a more flexible structure in which the actual academic work required to provide breadth can be tailored to the background and research plans of the student. The overall breadth required of Ph.D. students will remain roughly the same. The ability to incorporate breadth areas revelant to interdisciplinary research and new developments in computing science will be enhanced.

The Ph.D. program structure proposed here is within the range typical for computing science Ph.D. programs.

References

[1] Denning, P., Comer, D., Cries, D., Mulder, M., Tucker, A., Turner, A., Young, P. Computing as a Discipline: Final Report of the ACM Task Force on the Core of Computer Science. ACM Press. Association for Computing Machinery, 11 West 42 ${ }^{\text {nd }}$ Street, New York, New York, 10036, 1988. ISBN 0-8791-293-4.
[2] Tucker, A., Barnes, B.
Flexible Design: A Summary of Computing Curricula 1991.
Computer 24(11):56-66, November, 1991.
A similar summary article can be found in Communications of the ACM, June, 1991.
Admission
Current and Proposed Computing Science Graduate Program Regulations
On the following pages, the revised portions of the current and proposed Graduate Program Regulations are presented in a side-by-side format to facilitate comparison.

2. Structure for Breadth and Course Requirements

For purposes of defining the M.Sc. and Ph.D. breadth requirements in $\$ 5.1$ and $\S 6.1$, a set of subareas are identified and grouped into three major areas: Formal Topics in Computing Science, Computer Systems, and Knowledge and Information Systems. Table 1 shows the standard subareas within each area.

Area I Formal Topics in Computing Science	Area II Computer Systems	Area III Knowledge and Information Systems
Algorithms and Complexity	Operating Systems and Networks	Artificial Intelligence and Robotics
Formal Logic and Language Semantics	Computer Design and Organization	Database and Information Retrieval Systems
Discrete Mathematics	Programming Languages and Compilers	Numerical and Symbolic Computing
Operations Research		Computer Graphics and Interfaces Software Methodology and Engineering

 Graduate Breadth Evaluation Committee may accept requests to define subareas other than those in Table 1 for the purpose of satisfying M.Sc. or Ph.D. breadth requirements.
The current regulations use a rigid breadth structure comprised of six major areas: Artificial Intelfigence, Computer Design and Organization, Computer Systems, Database Systems, Programming Languages and Systems, and Theoretical Computing Science. Corresponding to each area, there is a level course. Breadth is defined in terns of a selection of 700 -level courses (cf. §2.1, $\$ 3.1$ in the curtent regulations).
Supervisory Committees
cf. $52.3, \$ 3.4$ in the current regulations
cf. $\S 2.2, \$ 3.3$ in the curtent regulations.

7
Students in the M.Sc. program are expected to acquire breadth of knowledge through a sequence of courses and depth of knowledge through completion and defense of a thesis based on independent work. Under normal circumstances a M.Sc. degree should be completed within 6 semesters and should not require longer than 8 semesters.

5.1. Breadth Requirement

 course credit (typically five courses) such that at least one course is chosen from each of Area I, Area II and Area III of Table 1. At least 12 of the 15 semester hours (typically 4 courses) must be taken in Computing Science. Course work will normally be completed by the end of the student's $5^{\text {th }}$ semester in the program.

5.2. Depth Requirement

 independent work. The student, in consultation with her/his supervisory committee, will formulate and submit for their approval a written thesis proposal, normally not later thạn the end of the $3^{\text {rd }}$ semester in the program. Regulations specifying the composition of the examining committee and

 required to give a seminar. Typically this will be on their thesis research and will be presented in the interval between distribution of the thesis to the committee and the defense.

9
This material is covered in $\$ 4$ in the proposed regulations.

School of Engineering Science

Summary of Graduate Curriculum Revisions

SGSC Reference: Mtg. of October 25, 1993
SCAP Reference:
SCAP 93 -37b

Changes to PhD Comprehensive Exams

SCHOOL OF ENGINEERING SCIENCE

SIMON FRASER UNIVERSITY

MEMO

To: Dr Parveen Bawa, Associate Dean and Chair, FAS Grad Committee
From: John Jones, Chair, SES Graduate Committee
Date: 23 July 1993
Subject: Changes to Comprehensive Exams
cc: \quad Lou Hafer, Linda Harasim, Michael McGonigle, Glen Tibbits

Here is a hardcopy version of the proposed calendar changes concerning the SES comprehensive exams. I will be in Texas on August 10, which would be our next meeting, so I would like to request that we meet at some alternative date, early enough to get the changes to Senate in time for the 94/95 calendar.

In two special meetings of the ENSC faculty, held on April 21 and May 26, the following changes to the calendar entry describing the PhD comprehensive exams were passed:

Current Calendar Entry:

Degree Requirements

Course Work
The minimum course requirement is 6 semester hours of graduate course credit beyond those taken for the Masters degree. No Special Topics or Directed Studies may be counted towards this requiremnt. Courses are selected in consultation with the senior supervisor. Some students may be required to supplement their graduate studies with undergraduate courses, or to take more than 6 semester hours of graduate course credit.

Qualifying Examination

The student will take a qualifying examination at a time determined by his/her Supervisory Committee, normally between the 6 th and 12 th month from admission to the PhD program. The student must demonstrate a sophisticated understanding of material normally associated with undergraduate and first level graduate studies. Written examinations will be set in each of the following four subjects: communications, microelectronics, intelligent systems and computing, robotics and control. The material for these examinations will be determined by the departmental graduate committee. With the approval of the supervisor committee, students select two subject areas from the four mentioned above: one as a major, the other as a minor. The written examination in the major area is followed shortly by an oral examination. The possible outcomes of the qualifying examination are pass; marginal (student may be required to take more courses, and is permitted a second and final opportunity to take the full qualifying exam within 12 months); fail (the student withdraws from the PhD program.) The results are given for the full qualifying exam.

Proposed New Calendar Entry:

Degree Requirements

Course Work
The minimum course requirement is 18 semester hours of credit beyond those taken for the Masters degree. Six of these hours will be for prescribed courses in the option in which the student is enrolled; alternatives can be substituted with the approval of the student's supervisory committee. At most six credit hours can be for senior-level undergraduate courses. At most six credit hours can be for directed studies. At least six of the credit hours must be taken within Engineering Science.

Qualifying Examination

The student will take an oral qualifying examination at a time determined by his/her Supervisory Committee, normally between the 6 th and 12 th month from admission to the PhD program. The student must demonstrate a sophisticated understanding of material in his/her major area of research, at a level normally associated with undergraduate and first-year graduate studies. The possible outcomes of the qualifying examination are pass; marginal (student may be required to take more courses, and is permitted a second and final opportunity to take the qualifying exam within 12 months); fail (the student withdraws from the PhD program.)

S.93-59c

School of Kinesiology

Summary of Graduate Curriculum Revisions

SGSC Reference: Mtg. of October 25, 1993

SCAP Reference:

$$
\text { SCAP } 93-37 \mathrm{C}
$$

$\begin{array}{lll}\text { New courses: } & \text { KIN 807-3 } & \text { Special Topics } \\ & \text { KIN 808-3 } & \text { Special Topics }\end{array}$

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form

ENDAR INFORMATION:

ENROLLMENT AND SCHEDULING:
Estimated Enrollment: 4-8 When will the course first be offered: 1993-3 How often will the course be offered: Whenever there is the need to offer more than one special topic in any given semester.

JUSTIFICATION:
The proposed additional course numbers for Special Topics would enable the School,
in any given semester, to offer more than one identified Special Topic.

RESOURCES:

Which Faculty member will normally teach the course: -
What are the budgetary implications for mounting the course:
None that can be
identified

Are there sufficient Library resources (append details): -

Appended: a) Outline of the Course
b) An indication of the competence of the Faculty member to give the course c) Library resources

Approved: Departmental Graduate Studies committee: Faculty Graduate studies committee: Haven Gena. Date: $\frac{20 \text { jid.9, } 93}{0058 ; 1993 .}$
Faculty:
favorer Ears
Senate Graduate Studies Committee:
 Date: \qquad

Senate:
Date:

SIMON FRASER UNIVERSITY

New Graduate Course Proposal Form
CALENDAR INFORMATION:
Department: $\frac{\text { SCHOOL OF KINESIOLOGY }}{\text { Special Topics }} \quad$ Course Number: 808

Description: Special topics in areas not currently covered within the graduate program offerings. The course may be offered as a lecture or a seminar course.
Credit Hours: 3 Vector: $3-0-0 \quad$ Prerequisite(s) if any: None

ENROLLMENT AND SCHEDULING:
Estimated Enrollment: 4-8 When will the course first be offered: 1993-3
How often will the course be offered: Whenever there is the need to offer more than \quad one Special Topic in any given semester.

JUSTIFICATION:
The proposed additional course numbers for Special Topics would enable the School, in any given semester, to offer more than one identified Special Topic.

RESOURCES:
Which Faculty member will normally teach the course:
What are the budgetary implications for mounting the course
None that can be
identified
-

Are there sufficient Library resources (append details): \qquad

Approved: Departmental Graduate studies committee: Faculty Graduate squdies Committee:

Senate:
Date:

