S.20-114

Simon Fraser University Maggie Benston Centre 1100 8888 University Drive Burnaby, BC V5A 1S6 TEL 778.782.3042 FAX 778.782.3080 gradstudies@sfu.ca www.sfu.ca/grad

MEMORANDUM			
ATTENTION	Senate	DATE	September 17, 2020
FROM RE:	Jeff Derksen, Chair of Senate Graduate Studies Committee (SGSC) New Course Proposal		AD

For information:

Acting under delegated authority at its meeting of September 8, 2020, SGSC approved the following new course, effective **Summer 2021:**

Faculty of Applied Science

School of Computing Science

1) New course: CMPT 769 Computational Photography and Image Manipulation

MEMORANDUM

Attention	Dr. Jeff Derksen Dean, Graduate Studies	Date September 8, 2020
From	Dr. Parvaneh Saeedi Faculty of Applied Science, G	psaeedi@sfu.ca raduate Studies Committee

Re: FAS-CMPT's new course proposal - CMPT 769

The faculty of Applied Sciences Graduate Studies Committee would request for including in the calendar for CMPT 769, Computational Photography, effective Summer 2021.

Regards, Parvaneh Saeedi

off. Il

COMPUTING SCIENCE

MEMO

BURNABY 9971 Applied Sciences Building 8888 University Drive Burnaby BC V5A 186 Canada

SURREY 250-13450 102 Avenue Surrey, BC V3T 0A3 Canada

Tel: 778-782-4277 Fax: 778-782-3045 Web: www.cs.sfu.ca

ATTENTION	Parvaneh Saeedi, Associate Director
FROM	Ghassan Hamarneh, Graduate Program Director
RE New Graduate Course Proposal – CMPT 769	
DATE	June 10, 2020

NEW GRADUATE COURSE PROPOSAL - Effective Summer 2021

CMPT 769 - Computational Photography and Image Manipulation

The School would like to offer a new course concerned with overcoming the limitations of traditional photography with computation. This has been approved by the GPC and director.

If you have any questions, please let me know.

Ghassan Hamarneh Graduate Chair, School of Computing Science

New Graduate Course Proposal

Course Subject (eg. PSYC) CMPT	Number (eg. 810)	769	Units (eg. 4) 3
Course title (max. 100 characters)			
Computational Photogra	aphy and	Image M	lanipulation
Short title (for enrollment/transcript - max. 30 characters	^{s)} Comput	ational Ph	otography
Course description for SFU Calendar (course description purpose of this course is" If the grading basis is satisfact	as should be brief and tory/unsatisfactory in	l should never begin w nclude this in the descr	vith phrases such as "This course will" or "The ription)
Computational Photography is concerned with overcoming the limitations of traditional photography with computation: in optics, sensors, and geometry; and even in composition, style, and human interfaces. The course covers computational techniques to improve the way we process, manipulate, and interact with visual media. The covered topics include image-based lighting and rendering, camera geometry and optics, computational apertures, advanced image filtering operations, high-dynamic range, image blending, texture synthesis and inpainting.			
Rationale for introduction of this course Computational Photography is a modern course offered in many universities with a strong visual computing community. Introduction of this course is a part of our effort to modernize our course offerings in Visual Computing following the addition of new faculty members with a wide range of expertise.			
Term of initial offering (eg. Fall 2019) Summer	2021	Course delivery (eg. 3 hrs/week for 13 weeks) 3 hrs/week for 13 weeks	
Frequency of offerings/year 1 per year		Estimated enrollment per offering 30	
Equivalent courses (courses that replicates the content of	this course to such a	n extent that students	should not receive credit for both courses)
CMPT 461 (two-way equivalency)			
Prerequisite and/or Corequisite			
Criminal record check required? Yes if yes is selected, add this as prerequisite Additional course fees? Yes Vo			Additional course fees? Yes VNo
Campus where course will be taught 🖉 Burnaby 🗌 Surrey 🔤 Vancouver 🔤 Great Northern Way 🔤 Off campus			
Course Components * 🔽 Lecture Seminar	Lab	Independent	Capstone
Grading Basis	Satisfactory/ U	nsatisfactory	In Progress / Complete
Repeat for credit? Yes X No Total re	epeats allowed:		Repeat within a term? 🗌 Yes 🗹 No
Required course? Yes 🔽 No Final e	exam required?	Yes No	Capstone course? Yes V No
Combined with a undergrad course? Yes No If yes, identify which undergraduate course and the additional course requirements for graduate students: CMPT 461. Additional assignments.			

* See important definitions on the curriculum website.

RESOURCES

If additional resources are required to offer this course, provide information on the source(s) of those additional resources.

Faculty member(s) who will normally teach this course

Yagiz Aksoy

Additional faculty members, space, and/or specialized equipment required in order to offer this course

Additional faculty members: Yasutaka Furukawa, Manolis Savva

CONTA	CT DEDCO	NI
		IN
	C 1 1 E113 C	

Academic Unit / Program	Name (typically, Graduate Program Chair)	Email
Computing Science	Ghassan Hamarneh	cs_grad_director@sfu.ca

ACADEMIC UNIT APPROVAL

A course outline must be included.

Non-departmentalized faculties need not sign

Graduate Program Committee Ghassan Hamarneh	Signature	Date 08 Jun. 2020
Department Chair Mohamed Hefeeda	Signature hefeed	Date 8 June 2020

FACULTY APPROVAL

The course form and outline must be sent by FGSC to the chairs of each FGSC (fgsc-list@sfu.ca) to check for an overlap in content

Overlap check done? **V**ES

This approval indicates that all the necessary course content and overlap concerns have been resolved. The Faculty/Academic Unit commits to providing the necessary resources.

Faculty Graduate Studies Committee	Signature	Date
Parvaneh Saeedi	- APIL	June 2020

A library review will be conducted. If additional funds are necessary, DGS will contact the academic unit prior to SGSC.

SENATE GRADUATE STUDIES COMMITTEE APPROVAL

Senate Graduate Studies Committee	Signature	Date
Jeff Derksen	All	September 17, 2020

ADMINISTRATIVE SECTION (for DGS office only)	
Library Check: Yes	
Course Attribute:	If different from regular units:
Course Attribute Value:	Academic Progress Units:
Instruction Mode:	Financial Aid Progress Units:
Attendance Type:	

CMPT 769 – Computational Photography

DESCRIPTION

Computational Photography is concerned with overcoming the limitations of traditional photography with computation: in optics, sensors, and geometry; and even in composition, style, and human interfaces. The course covers computational techniques to improve the way we process, manipulate, and interact with visual media. The covered topics include image-based lighting and rendering, camera geometry and optics, computational apertures, advanced image filtering operations, high-dynamic range, image blending, texture synthesis and inpainting.

TOPICS

- Imaging basics
- Camera basics
- Fourier transform and sampling
- High dynamic range imaging
- Tone mapping
- Bilateral filtering
- Color
- Image blending
- Boundary minimization techniques
- Focal stacks and light fields
- Transformations and panoramas
- Camera models
- Optical flow
- Deconvolution and noise

ADDITIONAL ASSINGMENTS

Additional assignments for graduate students may include a presentation on a topic related to the course content, extended programming assignments where students implement a related method or a paper, or extended expectations from the course project such as a harder problem setup or demonstration of additional application scenarios

GRADING

- Programming assignments: 30%
- Final project: 40%
- Final exam: 30%

MATERIAL

Recommended reading: R. Szeliski, Computer Vision: Algorithms and Applications, Springer, London, 2011

CMPT 461 – Computational Photography

DESCRIPTION

Computational Photography is concerned with overcoming the limitations of traditional photography with computation: in optics, sensors, and geometry; and even in composition, style, and human interfaces. The course covers computational techniques to improve the way we process, manipulate, and interact with visual media. The covered topics include image-based lighting and rendering, camera geometry and optics, computational apertures, advanced image filtering operations, high-dynamic range, image blending, texture synthesis and inpainting.

TOPICS

- Imaging basics
- Camera basics
- Fourier transform and sampling
- High dynamic range imaging
- Tone mapping
- Bilateral filtering
- Color
- Image blending
- Boundary minimization techniques
- Focal stacks and light fields
- Transformations and panoramas
- Camera models
- Optical flow
- Deconvolution and noise

GRADING

- Programming assignments: 30%
- Final project: 40%
- Final exam: 30%

MATERIAL

Recommended reading: R. Szeliski, Computer Vision: Algorithms and Applications, Springer, London, 2011